The unprecedented transformation of a wide range of synthetically appealing phthalimides into amides in a single-step operation has been achieved in high yields and short reaction times using a ruthenium catalyst. Mechanistic studies revealed a unique, homogeneous pathway involving five-membered ring opening and CO2 release with water being the source of protons.
[EN] CATALYTIC HYDROGENATION OF SUBSTITUTED CYANOPYRIDINES AND PROCESS FOR PREPARING SUBSTITUTED PYRIDYLMETHYLBENZAMIDES<br/>[FR] HYDROGÉNATION CATALYTIQUE DE CYANOPYRIDINES SUBSTITUÉES ET PROCÉDÉ DE PRÉPARATION DE PYRIDYLMÉTHYLBENZAMIDES SUBSTITUÉS
申请人:BAYER CROPSCIENCE AG
公开号:WO2016173998A1
公开(公告)日:2016-11-03
The present invention relates to novel processes for the preparation of substituted pyridyl- methylbenzamide derivatives of formula (I), in particular 2,6-dichloro-N- [3-chloro-5-(trifluoromethyl)- 2-pyridyl]methyl}benzamide (Fluopicolide), and for the catalytic hydrogenation of substituted cyanopyridine derivatives, in particular 3-chloro-2-cyano-5-trifluoromethylpyridine [= Py-CN] to the corresponding substituted 2-methylaminopyridine derivatives, in particular 2-aminomethyl-3-chloro-5- trifluoromethylpyridine [= Py-methylamine] or salts thereof in the presence of metal catalysts such as in particular palladium catalysts, catalytic modifiers and acids.
Organic Ligand-Free Alkylation of Amines, Carboxamides, Sulfonamides, and Ketones by Using Alcohols Catalyzed by Heterogeneous Ag/Mo Oxides
作者:Xinjiang Cui、Yan Zhang、Feng Shi、Youquan Deng
DOI:10.1002/chem.201001915
日期:2011.1.17
that is, amines, carboxamides, sulfonamides, and ketones, were successfully synthesized through a borrowing‐hydrogen mechanism. Up to 99 % isolated yields were obtained under relatively mild conditions without additive organic ligand. The catalytic process shows promise for the efficient and economic synthesis of amine, carboxamide, sulfonamide, and ketone derivatives because of the simplicity of the
复杂且昂贵的有机配体通常在制备或工业水平的精细化学合成中必不可少。通过使用不具有添加剂有机配体的非均相催化剂体系来合成精细化学品是非常合乎需要的,但由于它们的通用性差和严格的反应条件而受到严格限制。在这里,我们显示了具有特定Ag 6 Mo 10 O 33的Ag / Mo杂化材料催化形成碳-氮或碳-碳键的结果晶体结构。通过借氢机制成功合成了48种含氮或氧的化合物,即胺,羧酰胺,磺酰胺和酮。在没有添加剂有机配体的条件下,在相对温和的条件下可获得高达99%的分离产率。催化过程显示出胺,羧酰胺,磺酰胺和酮衍生物的高效经济合成的希望,因为该系统简单且易于操作。
Nickel-Catalyzed Phosphine Free Direct N-Alkylation of Amides with Alcohols
作者:Jagadish Das、Debasis Banerjee
DOI:10.1021/acs.joc.7b03215
日期:2018.3.16
Herein, we developed an operational simple, practical, and selective Ni-catalyzed synthesis of secondary amides. Application of renewable alcohols, earth-abundant and nonprecious nickel catalyst facilitates the transformations, releasing water as byproduct. The catalytic system is tolerant to a variety of functional groups including nitrile, allylic ether, and alkene and could be extended to the synthesis
Copper-Mediated<i>ortho</i>-Nitration of (Hetero)Arenecarboxylates
作者:Dmitry Katayev、Kai F. Pfister、Timo Wendling、Lukas J. Gooßen
DOI:10.1002/chem.201403363
日期:2014.8.4
Various (hetero)arenecarboxylic acids were converted to the corresponding Daugulis amides and nitrated selectively in the ortho‐position in the presence of [CuNO3(PPh3)2] and AgNO2 at 50 °C. A microwave‐assisted saponification allows regenerating the carboxylate group within minutes, which may then be removed tracelessly by protodecarboxylation, or substituted by aryl‐ or alkoxy‐groups via decarboxylative