摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

3-(hydroxymethyl)-1-methyl-5-(2-methylaziridin-1-yl)-2-phenyl-1H-indole-4,7-dione

中文名称
——
中文别名
——
英文名称
3-(hydroxymethyl)-1-methyl-5-(2-methylaziridin-1-yl)-2-phenyl-1H-indole-4,7-dione
英文别名
3-Hydroxymethyl-5-(2-methylaziridin-1-yl)-1-methyl-2-phenylindole-4,7-dione;3-(hydroxymethyl)-1-methyl-5-(2-methylaziridin-1-yl)-2-phenylindole-4,7-dione
3-(hydroxymethyl)-1-methyl-5-(2-methylaziridin-1-yl)-2-phenyl-1H-indole-4,7-dione化学式
CAS
——
化学式
C19H18N2O3
mdl
——
分子量
322.364
InChiKey
RQFCSAVLOHDQNB-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    1.8
  • 重原子数:
    24
  • 可旋转键数:
    3
  • 环数:
    4.0
  • sp3杂化的碳原子比例:
    0.26
  • 拓扑面积:
    62.3
  • 氢给体数:
    1
  • 氢受体数:
    4

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为产物:
    描述:
    2-甲基氮丙啶3-hydroxymethyl-5-methoxy-1-methyl-2-phenylindole-4,7-dioneN,N-二甲基甲酰胺 为溶剂, 以79%的产率得到3-(hydroxymethyl)-1-methyl-5-(2-methylaziridin-1-yl)-2-phenyl-1H-indole-4,7-dione
    参考文献:
    名称:
    Indolequinone Antitumor Agents:  Correlation between Quinone Structure, Rate of Metabolism by Recombinant Human NAD(P)H:Quinone Oxidoreductase, and in Vitro Cytotoxicity
    摘要:
    A series of indolequinones bearing various functional groups has been synthesized, and the effects of substituents on the metabolism of the quinones by recombinant human NAD(P)H: quinone oxidoreductase (NQO1) were studied. Thus 5-methoxyindolequinones were prepared by the Nenitzescu reaction, followed by functional group interconversions. The methoxy group was subsequently displaced by amine nucleophiles to give a series of amine-substituted quinones. Metabolism of the quinones by NQO1 revealed that, in general, compounds with electron-withdrawing groups at the indole 3-position were among the best substrates, whereas those with amine groups at the 5-position were poor substrates. Compounds with a leaving group at the 3-indolyl methyl position generally inactivated the enzyme. The toxicity toward non-small-cell lung cancer cells with either high NQO1 activity (H460) or no detectable activity (H596) was also studied in representative quinones. Compounds which were good substrates for NQO1 showed the highest selectivity between the two cell lines.
    DOI:
    10.1021/jm980328r
点击查看最新优质反应信息

文献信息

  • IDENTIFICATION AND TARGETED MODULATION OF GENE SIGNALING NETWORKS
    申请人:CAMP4 THERAPEUTICS CORPORATION
    公开号:US20210254056A1
    公开(公告)日:2021-08-19
    The present invention provides methods and compositions for the evaluation, alteration and/or optimization of gene signaling. Methods and systems are also provided which exploit the information generated in the identification of new targets and non-canonical signaling pathways.
  • Indolequinone Antitumor Agents:  Correlation between Quinone Structure, Rate of Metabolism by Recombinant Human NAD(P)H:Quinone Oxidoreductase, and in Vitro Cytotoxicity
    作者:Howard D. Beall、Shannon Winski、Elizabeth Swann、Anna R. Hudnott、Ann S. Cotterill、Noeleen O'Sullivan、Stephen J. Green、Richard Bien、David Siegel、David Ross、Christopher J. Moody
    DOI:10.1021/jm980328r
    日期:1998.11.1
    A series of indolequinones bearing various functional groups has been synthesized, and the effects of substituents on the metabolism of the quinones by recombinant human NAD(P)H: quinone oxidoreductase (NQO1) were studied. Thus 5-methoxyindolequinones were prepared by the Nenitzescu reaction, followed by functional group interconversions. The methoxy group was subsequently displaced by amine nucleophiles to give a series of amine-substituted quinones. Metabolism of the quinones by NQO1 revealed that, in general, compounds with electron-withdrawing groups at the indole 3-position were among the best substrates, whereas those with amine groups at the 5-position were poor substrates. Compounds with a leaving group at the 3-indolyl methyl position generally inactivated the enzyme. The toxicity toward non-small-cell lung cancer cells with either high NQO1 activity (H460) or no detectable activity (H596) was also studied in representative quinones. Compounds which were good substrates for NQO1 showed the highest selectivity between the two cell lines.
查看更多