Synthesis, in vitro antiproliferative activities, and Chk1 inhibitory properties of pyrrolo[3,4-a]carbazole-1,3-diones, pyrrolo[3,4-c]carbazole-1,3-diones, and 2-aminopyridazino[3,4-a]pyrrolo[3,4-c]carbazole-1,3,4,7-tetraone
摘要:
The synthesis of substituted pyrrolo[3,4-a]carbazole-1,3-diones, pyrrolo[3,4-c]carbazole-1-,3-diones, and 2-aminopyridazino[3,4-a]pyrrolo[3,4-c]carbazole-1,3,4,7-tetraone is reported. Their inhibitory properties toward Checkpoint I kinase (Chk1) have been evaluated and their in vitro antiproliferative activities toward three tumor cell lines: murine leukemia L1210, human colon carcinoma HT29 and HCT116 have been determined. From the biological results, it appears that, in contrast with the upper E heterocycle, the lower D heterocycle is not absolutely required for Chk1 inhibition. The ATP binding pocket of Chk1 seems to be adaptable to substitution of the nitrogen of the imide E heterocycle with a hydroxymethyl group, allowing the fundamental hydrogen bond with the Glu(85) residue of the enzyme. (c) 2007 Elsevier Masson SAS. All rights reserved.
Synthesis, in vitro antiproliferative activities, and Chk1 inhibitory properties of pyrrolo[3,4-a]carbazole-1,3-diones, pyrrolo[3,4-c]carbazole-1,3-diones, and 2-aminopyridazino[3,4-a]pyrrolo[3,4-c]carbazole-1,3,4,7-tetraone
摘要:
The synthesis of substituted pyrrolo[3,4-a]carbazole-1,3-diones, pyrrolo[3,4-c]carbazole-1-,3-diones, and 2-aminopyridazino[3,4-a]pyrrolo[3,4-c]carbazole-1,3,4,7-tetraone is reported. Their inhibitory properties toward Checkpoint I kinase (Chk1) have been evaluated and their in vitro antiproliferative activities toward three tumor cell lines: murine leukemia L1210, human colon carcinoma HT29 and HCT116 have been determined. From the biological results, it appears that, in contrast with the upper E heterocycle, the lower D heterocycle is not absolutely required for Chk1 inhibition. The ATP binding pocket of Chk1 seems to be adaptable to substitution of the nitrogen of the imide E heterocycle with a hydroxymethyl group, allowing the fundamental hydrogen bond with the Glu(85) residue of the enzyme. (c) 2007 Elsevier Masson SAS. All rights reserved.
Synthesis, in vitro antiproliferative activities, and Chk1 inhibitory properties of pyrrolo[3,4-a]carbazole-1,3-diones, pyrrolo[3,4-c]carbazole-1,3-diones, and 2-aminopyridazino[3,4-a]pyrrolo[3,4-c]carbazole-1,3,4,7-tetraone
作者:Elisabeth Conchon、Fabrice Anizon、Bettina Aboab、Roy M. Golsteyn、Stéphane Léonce、Bruno Pfeiffer、Michelle Prudhomme
DOI:10.1016/j.ejmech.2007.03.026
日期:2008.2
The synthesis of substituted pyrrolo[3,4-a]carbazole-1,3-diones, pyrrolo[3,4-c]carbazole-1-,3-diones, and 2-aminopyridazino[3,4-a]pyrrolo[3,4-c]carbazole-1,3,4,7-tetraone is reported. Their inhibitory properties toward Checkpoint I kinase (Chk1) have been evaluated and their in vitro antiproliferative activities toward three tumor cell lines: murine leukemia L1210, human colon carcinoma HT29 and HCT116 have been determined. From the biological results, it appears that, in contrast with the upper E heterocycle, the lower D heterocycle is not absolutely required for Chk1 inhibition. The ATP binding pocket of Chk1 seems to be adaptable to substitution of the nitrogen of the imide E heterocycle with a hydroxymethyl group, allowing the fundamental hydrogen bond with the Glu(85) residue of the enzyme. (c) 2007 Elsevier Masson SAS. All rights reserved.