大多数已知和新合成的含能材料包含具有各种爆炸团的多氮或氮氧杂环。然而,这些有机支架的可用结构组合是有限的,并且即将达到其极限。在此,我们提出了一系列含硫聚唑结构的设计和合成,该结构包含通过C-C键连接的1,3,4-噻二唑和呋喃环,并富含高能硝基和偶氮官能团。就爆轰性能而言,所有合成的1,3,4-噻二唑-呋喃组件( D = 7.7–7.9 km s –1 ; P = 26–28 GPa)均位于强力炸药TATB( D = 8.0 km s –1 )之间; P = 31 GPa) 和熔铸材料 TNT ( D = 6.9 km s –1 ; P = 23 GPa)。在合成系列中,偶氮桥衍生物5似乎最具有实际意义,因为它结合了相对较高的能量性能( D = 7.9 km s –1 ; P = 28 GPa)和非常高的热稳定性(271 °C) ,并且对摩擦不敏感。通过这些功能特性, 5 的性能优于基准耐热爆炸物六硝基芪
大多数已知和新合成的含能材料包含具有各种爆炸团的多氮或氮氧杂环。然而,这些有机支架的可用结构组合是有限的,并且即将达到其极限。在此,我们提出了一系列含硫聚唑结构的设计和合成,该结构包含通过C-C键连接的1,3,4-噻二唑和呋喃环,并富含高能硝基和偶氮官能团。就爆轰性能而言,所有合成的1,3,4-噻二唑-呋喃组件( D = 7.7–7.9 km s –1 ; P = 26–28 GPa)均位于强力炸药TATB( D = 8.0 km s –1 )之间; P = 31 GPa) 和熔铸材料 TNT ( D = 6.9 km s –1 ; P = 23 GPa)。在合成系列中,偶氮桥衍生物5似乎最具有实际意义,因为它结合了相对较高的能量性能( D = 7.9 km s –1 ; P = 28 GPa)和非常高的热稳定性(271 °C) ,并且对摩擦不敏感。通过这些功能特性, 5 的性能优于基准耐热爆炸物六硝基芪