Hepatic. Small amounts of unmetabolized triazolam appear in the urine. Triazolam undergoes hepatic microsomal oxidation to inactive hydroxylated metabolites that are eliminated primarily as glucuronide conjugates (A630).
Route of Elimination: Triazolam and its metabolites, principally as conjugated glucuronides, which are presumably inactive, are excreted primarily in the urine. Only small amounts of unmetabolized triazolam appear in the urine. The two primary metabolites accounted for 79.9% of urinary excretion.
Half Life: 1.5-5.5 hours
Benzodiazepines bind nonspecifically to bezodiazepine receptors BNZ1, which mediates sleep, and BNZ2, which affects affects muscle relaxation, anticonvulsant activity, motor coordination, and memory. As benzodiazepine receptors are thought to be coupled to gamma-aminobutyric acid-A (GABA<sub>A</sub>) receptors, this enhances the effects of GABA by increasing GABA affinity for the GABA receptor. Binding of GABA to the site opens the chloride channel, resulting in a hyperpolarized cell membrane that prevents further excitation of the cell.
Triazolam, like other benzodiazepines, is rarely associated with serum ALT and alkaline phosphatase elevations, and clinically apparent liver injury from triazolam is rare. There have been no well described case reports of acute liver injury from triazolam, except for a single report of severe and prolonged cholestatic liver injury ultimately leading to death from hepatic failure. Isolated single cases of clinically apparent cholestatic liver injury have been reported with other benzodiazepines including alprazolam, chlordiazepoxide, clonazepam, diazepam, flurazepam, lorazepam, and triazolam. The clinical pattern of acute liver injury from benzodiazepines is typically self-limited in course, mild-to-moderate in severity and with a latency of 1 to 6 months. Fever and rash are uncommon as is autoantibody formation.
Triazolam and its metabolites, principally as conjugated glucuronides, which are presumably inactive, are excreted primarily in the urine. Only small amounts of unmetabolized triazolam appear in the urine. The two primary metabolites accounted for 79.9% of urinary excretion.
Plasma half-life, elimination coefficient, concentration, and apparent volume of distribution were calculated at steady state and mean values were 53 hr, 0.0147/hr, 884 ng/mL, & 1.13 l/kg /respectively/.
Triazolam is rapidly and nearly completely absorbed from the GI tract. It has a biphasic half-life with a reported mean apparent half-life of 3.4 hr for the initial phase and 7.8 hr for the terminal phase. It is reported to be extensively bound to plasma proteins. It is excreted in the urine in the form of its metabolites with only small amounts appearing unchanged.
In a study of triazolam tablets and a liquid formulation in healthy subjects, the bioavailability of the tablets was rapid and, relative to the liquid formulation, complete. The average half-life for absorption was 8 minutes with peak concentrations being achieved an average of 42 minutes after dosing.
[EN] COMPOUNDS AND THEIR USE AS BACE INHIBITORS<br/>[FR] COMPOSÉS ET LEUR UTILISATION EN TANT QU'INHIBITEURS DE BACE
申请人:ASTRAZENECA AB
公开号:WO2016055858A1
公开(公告)日:2016-04-14
The present application relates to compounds of formula (I), (la), or (lb) and their pharmaceutical compositions/preparations. This application further relates to methods of treating or preventing Αβ-related pathologies such as Down's syndrome, β- amyloid angiopathy such as but not limited to cerebral amyloid angiopathy or hereditary cerebral hemorrhage, disorders associated with cognitive impairment such as but not limited to MCI ("mild cognitive impairment"), Alzheimer's disease, memory loss, attention deficit symptoms associated with Alzheimer's disease, neurodegeneration associated with diseases such as Alzheimer's disease or dementia, including dementia of mixed vascular and degenerative origin, pre-senile dementia, senile dementia and dementia associated with Parkinson's disease.
[EN] METHYL OXAZOLE OREXIN RECEPTOR ANTAGONISTS<br/>[FR] MÉTHYLOXAZOLES ANTAGONISTES DU RÉCEPTEUR DE L'OREXINE
申请人:MERCK SHARP & DOHME
公开号:WO2016089721A1
公开(公告)日:2016-06-09
The present invention is directed to methyl oxazole compounds which are antagonists of orexin receptors. The present invention is also directed to uses of the compounds described herein in the potential treatment or prevention of neurological and psychiatric disorders and diseases in which orexin receptors are involved. The present invention is also directed to compositions comprising these compounds. The present invention is also directed to uses of these compositions in the potential prevention or treatment of such diseases in which orexin receptors are involved.
Heterobicyclic compounds of Formula (I):
or a pharmaceutically-acceptable salt, tautomer, or stereoisomer thereof, as defined in the specification, and compositions containing them, and processes for preparing such compounds. Provided herein also are methods of treating disorders or diseases treatable by inhibition of PDE10, such as obesity, non-insulin dependent diabetes, schizophrenia, bipolar disorder, obsessive-compulsive disorder, Huntington's Disease, and the like.
Formula (I)的杂环化合物:
或其药用可接受的盐、互变异构体或立体异构体,如规范中所定义,并含有它们的组合物,以及制备这种化合物的方法。本文还提供了通过抑制PDE10来治疗由此可治疗的疾病或疾病的方法,如肥胖症、非胰岛素依赖型糖尿病、精神分裂症、躁郁症、强迫症、亨廷顿病等。
[EN] NAPHTHALENE CARBOXAMIDE M1 RECEPTOR POSITIVE ALLOSTERIC MODULATORS<br/>[FR] COMPOSÉS DE NAPHTHALÈNE CARBOXAMIDE, MODULATEURS ALLOSTÉRIQUES POSITIFS DU RÉCEPTEUR M1
申请人:MERCK SHARP & DOHME
公开号:WO2011149801A1
公开(公告)日:2011-12-01
The present invention is directed to naphthalene carboxamide compounds of formula (I) which are M1 receptor positive allosteric modulators and that are useful in the treatment of diseases in which the M1 receptor is involved, such as Alzheimers disease, schizophrenia, pain or sleep disorders. The invention is also directed to pharmaceutical compositions comprising the compounds and to the use of the compounds and compositions in the treatment of diseases mediated by the M1 receptor.
[EN] QUINAZOLINE DERIVATIVES, COMPOSITIONS, AND USES RELATED THERETO<br/>[FR] DÉRIVÉS DE QUINAZOLINE, COMPOSITIONS ET UTILISATIONS ASSOCIÉES
申请人:UNIV EMORY
公开号:WO2013181135A1
公开(公告)日:2013-12-05
The disclosure relates to quinazoline derivatives, compositions, and methods related thereto. In certain embodiments, the disclosure relates to inhibitors of NADPH-oxidases (Nox enzymes) and/or myeloperoxidase.