Quantitative Structure−Activity Relationship Analysis as a Tool To Evaluate the Mode of Action of Chemical Hybridizing Agents for Wheat (Triticum aestivum L.)
摘要:
Augmentation of wheat production calls for introduction of wheat hybrids in cultivation. In the absence of viable alternative technology of hybrid wheat development, chemical induction of male sterility mediated technology based on chemical hybridizing agents (CHAs) holds a great potential. The QSAR method was applied to two families of CHAs in the N-acylanilines and pyridone class of chemistry. The models for each CHA family gave good correlation between the variations in log percent of male sterility and the steric-electrostatic properties of the sets. QSAR analysis has revealed a direct relationship of the Swain-Lupton constant F-p and molecular mass but an inverse relationship of MR, ES, and Swain-Lupton resonance constant R in influencing the bioactivity in the N-acylanilines. QSAR analysis of four parent families consisting of two training sets each of pyrid-2-ones and prid-4-ones revealed the positive contributions of field effect exemplified by the Swain-Lupton field constant (F) and the negative contributions of the molar refractivity (MR) of aromatic substituents in all but one training set. The QSAR models also indicated that increased steric bulk at the 4-position on the phenyl ring is associated with enhanced activity. These leads will be useful in explaining the CHA binding fit in the macromolecular receptor site.
Chemical Hybridizing Agents for Chickpea (<i>Cicer arietinum</i> L.): Leads from QSAR Analysis of Ethyl Oxanilates and Pyridones
作者:Kajal Chakraborty、C. Devakumar
DOI:10.1021/jf052435h
日期:2006.3.1
In the self-pollinated crops such as chickpea, induction of male sterility by deployment of chemical hybridizing agents (CHAs) facilitating "two-line" approach holds immense potential in heterosis breeding. A total of 40 test CHAs comprising 20 ethyl oxanilates and 20 pyridones were screened as potential CHAs on chickpea (variety BG 1088) at 500, 800, and 1000 ppm. Three test compounds mostly having either F (4)/Br (5)/CF3 (19) at the para position of the aryl ring from a pool of 20 ethyl oxanilates were identified as the most potent CHAs causing >= 99% induction of pollen sterility and > 90% total flower sterility at 1000-ppm test concentration. Among pyridone derivatives, N-(4-chlorophenyl)-5-carbethoxy-4,6-dimethyl, 1, 2-dihydropyrid-2-one (26) was found to be the most active. Quantitative structure activity relationship (QSAR) analysis has revealed a direct involvement of Swain-Lupton field constant, F, with the target bioactivity which implied that field rather than resonance effect (R) had a positive effect on the activity. The real guiding principle for selectivity was found out to be the hydrophobic parameter pi value. The QSAR models indicated that increased steric bulk at the 4-position on the phenyl ring is associated with enhanced activity. The CHAs appeared to act by mimicking UDP-glucose, the key substrate in the synthesis of callose, or lead to an imbalance in acid-base equilibrium in pollen mother cells resulting in dissolution of callose wall by premature callase secretion.
Quantitative Structure−Activity Relationship Analysis as a Tool To Evaluate the Mode of Action of Chemical Hybridizing Agents for Wheat (<i>Triticum aestivum </i>L.)
作者:Kajal Chakraborty、C. Devakumar
DOI:10.1021/jf050187j
日期:2005.5.1
Augmentation of wheat production calls for introduction of wheat hybrids in cultivation. In the absence of viable alternative technology of hybrid wheat development, chemical induction of male sterility mediated technology based on chemical hybridizing agents (CHAs) holds a great potential. The QSAR method was applied to two families of CHAs in the N-acylanilines and pyridone class of chemistry. The models for each CHA family gave good correlation between the variations in log percent of male sterility and the steric-electrostatic properties of the sets. QSAR analysis has revealed a direct relationship of the Swain-Lupton constant F-p and molecular mass but an inverse relationship of MR, ES, and Swain-Lupton resonance constant R in influencing the bioactivity in the N-acylanilines. QSAR analysis of four parent families consisting of two training sets each of pyrid-2-ones and prid-4-ones revealed the positive contributions of field effect exemplified by the Swain-Lupton field constant (F) and the negative contributions of the molar refractivity (MR) of aromatic substituents in all but one training set. The QSAR models also indicated that increased steric bulk at the 4-position on the phenyl ring is associated with enhanced activity. These leads will be useful in explaining the CHA binding fit in the macromolecular receptor site.
Chakraborty, Kajal; Devakumar, Indian Journal of Chemistry - Section B Organic and Medicinal Chemistry, 2006, vol. 45, # 3, p. 703 - 714