Inhibition of Human <i>O</i><sup>6</sup>-Alkylguanine-DNA Alkyltransferase and Potentiation of the Cytotoxicity of Chloroethylnitrosourea by 4(6)-(Benzyloxy)-2,6(4)-diamino-5-(nitro or nitroso)pyrimidine Derivatives and Analogues
作者:Isamu Terashima、Kohfuku Kohda
DOI:10.1021/jm970363i
日期:1998.2.1
A series of 4(6)-(benzyloxy)-2,6(4)-diamino-5-(nitro or nitroso)pyrimidine derivatives and analogues of which 4(6)-benzyloxy groups were replaced with a (2-, 3-, or 4-fluorobenzyl)oxy or (2-, 3-, or 4-pyridylmethyl)oxy group, was synthesized. The abilities of these compounds to inhibit human O-6-alkylguanine DNA alkyltransferase (AGAT) in vitro and to potentiate the cytotoxicity of 1-[(4-amino-2-methyl-5-pyrimidinyl)methyl]-3-(2-chloroethyl)-3-nitrosourea (ACNU) toward HeLa S3 cells were evaluated. 2,4-Diamino-6-[(2-fluorobenzyl)oxy]-5-nitropyrimidine (3) and 2,4-diamino-5-nitro-6-(2-pyridylmethoxy) (6), whose ortho positions of the 6-substituent are modified, were much weaker in terms of these abilities than the corresponding meta-or para-modified compounds. These results are consistent with those,of our previous study using a series of O-6-benzylguanine derivatives. All 5-nitrosopyrimidine derivatives examined exerted both stronger AGAT-inhibition and ACNU-enhancement abilities than the corresponding 5-nitro derivatives. Among a variety of compounds that we have examined to date, 2,4-diamino-6-[(4-fluorobenzyl)oxy]-5-nitrbsopyrimidine (10) exhibited the strongest ability to inhibit AGAT, and its magnitude was 2.5 and 50 times those of 4-(benzyloxy)-2,6-diamino-5-nitrosopyrimidine (9) and O-6-benzylguanine (1), respectively. A strong positive correlation was observed between the ability to inhibit AGAT and to potentiate the cytotoxicity of ACNU. This strongly indicates that 4(6)-(benzyloxy)pyrimidine derivatives and their analogues potentiate ACNU cytotoxicity by inhibiting AGAT activity. To characterize the reactivity of test compounds, alkyl-transfer reactions were also carried out using the biomimetic alkyl-transfer system.