电解质不稳定性是使锂氧(Li-O 2)电池投入实际使用的最具挑战性的障碍之一。使用物理有机化学原理合理设计新的分子组分可以发现具有现有配方无法实现的稳定性的电解质。在这里,我们报道了在室温下为液态,能够溶解相当高浓度的Li盐(例如,双(三氟甲烷)磺酰亚胺锂[LiTFSI])并在高温下非常稳定的基于磺酰胺和磺酰胺的小分子的发展。非质子传递Li-O 2电池的苛刻化学和电化学条件。特别是N,N发现-二甲基三氟甲磺酰胺对过氧化物和超氧化物的化学降解具有高度抗性,在高达4.5 V Li的条件下对电化学氧化稳定,在Li-O 2电池中以<4.2 V Li循环时,对> 90个循环稳定。这项研究为开发基于磺酰胺和磺酰胺的下一代电解质组件提供了指导原则。
电解质不稳定性是使锂氧(Li-O 2)电池投入实际使用的最具挑战性的障碍之一。使用物理有机化学原理合理设计新的分子组分可以发现具有现有配方无法实现的稳定性的电解质。在这里,我们报道了在室温下为液态,能够溶解相当高浓度的Li盐(例如,双(三氟甲烷)磺酰亚胺锂[LiTFSI])并在高温下非常稳定的基于磺酰胺和磺酰胺的小分子的发展。非质子传递Li-O 2电池的苛刻化学和电化学条件。特别是N,N发现-二甲基三氟甲磺酰胺对过氧化物和超氧化物的化学降解具有高度抗性,在高达4.5 V Li的条件下对电化学氧化稳定,在Li-O 2电池中以<4.2 V Li循环时,对> 90个循环稳定。这项研究为开发基于磺酰胺和磺酰胺的下一代电解质组件提供了指导原则。