Discovery of Novel Indole-Based Allosteric Highly Potent ATX Inhibitors with Great In Vivo Efficacy in a Mouse Lung Fibrosis Model
摘要:
Autotaxin (ATX) is the dominant catalytic enzyme accounting for the lipid mediator lysophosphatidic acid (LPA) through hydrolysis of lysophosphatidylcholine (LPC). There is great interest in developing nonacidic ATX inhibitors with a specific binding mode to serve as potential in vivo effective therapeutic tools. Herein, dating from a high-throughput screening (HTS) product Indole-1 (740 nM), a dedicated optimization campaign was implemented through derivatizing the -COOH group to versatile linkers that well-bridged the indole skeleton and the hydrophobic pocket binding groups. Ultimately, it was established that the coexistence of a carbamate linker and -OH-group-containing amines could generally furnish excellent indole-based ATX inhibitors with even below 1 nM in vitro activities. Two optimal entities were advanced to a bleomycin-induced mice pulmonary fibrosis model, which exerted promising efficacy in alleviating the damaged lung texture caused by bleomycin exposure. The novel carbamate-containing indole-based ATX inhibitors with a concrete binding mode may contribute to the identification of potential therapeutic agents to intervene in fibrotic diseases.
Discovery of Novel Indole-Based Allosteric Highly Potent ATX Inhibitors with Great In Vivo Efficacy in a Mouse Lung Fibrosis Model
摘要:
Autotaxin (ATX) is the dominant catalytic enzyme accounting for the lipid mediator lysophosphatidic acid (LPA) through hydrolysis of lysophosphatidylcholine (LPC). There is great interest in developing nonacidic ATX inhibitors with a specific binding mode to serve as potential in vivo effective therapeutic tools. Herein, dating from a high-throughput screening (HTS) product Indole-1 (740 nM), a dedicated optimization campaign was implemented through derivatizing the -COOH group to versatile linkers that well-bridged the indole skeleton and the hydrophobic pocket binding groups. Ultimately, it was established that the coexistence of a carbamate linker and -OH-group-containing amines could generally furnish excellent indole-based ATX inhibitors with even below 1 nM in vitro activities. Two optimal entities were advanced to a bleomycin-induced mice pulmonary fibrosis model, which exerted promising efficacy in alleviating the damaged lung texture caused by bleomycin exposure. The novel carbamate-containing indole-based ATX inhibitors with a concrete binding mode may contribute to the identification of potential therapeutic agents to intervene in fibrotic diseases.
Selected novel urea compounds are effective for prophylaxis and treatment of diseases, such as cell proliferation or apoptosis mediated diseases. The invention encompasses novel compounds, analogs, prodrugs and pharmaceutically acceptable salts thereof, pharmaceutical compositions and methods for prophylaxis and treatment of diseases and other maladies or conditions involving stoke, cancer and the like. The subject invention also relates to processes for making such compounds as well as to intermediates useful in such processes.
Copper-catalyzed formation of dihydrothiazoles and functionalization through subsequent ene reactions
作者:David R. Shea、James M. Lanning、Mark J. Ferraro、Joseph M. Fose、Michael W. Fennie
DOI:10.1016/j.tetlet.2023.154787
日期:2023.11
Propargyl thioimidates synthesized from readily-available starting materials are cyclized into non-aromatic dihydrothiazoles with high chemoselectivity using copper (I) iodide as a catalyst. These molecules engage in ene-type reactions with aldehyde, imine, and azo reacting partners with concomitant aromatization. A one-pot tandem hydroamination/ene process has been developed.
Autotaxin (ATX) is the dominant catalytic enzyme accounting for the lipid mediator lysophosphatidic acid (LPA) through hydrolysis of lysophosphatidylcholine (LPC). There is great interest in developing nonacidic ATX inhibitors with a specific binding mode to serve as potential in vivo effective therapeutic tools. Herein, dating from a high-throughput screening (HTS) product Indole-1 (740 nM), a dedicated optimization campaign was implemented through derivatizing the -COOH group to versatile linkers that well-bridged the indole skeleton and the hydrophobic pocket binding groups. Ultimately, it was established that the coexistence of a carbamate linker and -OH-group-containing amines could generally furnish excellent indole-based ATX inhibitors with even below 1 nM in vitro activities. Two optimal entities were advanced to a bleomycin-induced mice pulmonary fibrosis model, which exerted promising efficacy in alleviating the damaged lung texture caused by bleomycin exposure. The novel carbamate-containing indole-based ATX inhibitors with a concrete binding mode may contribute to the identification of potential therapeutic agents to intervene in fibrotic diseases.