摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

2-ethylidene-4-hexyl-1,3-dioxolane

中文名称
——
中文别名
——
英文名称
2-ethylidene-4-hexyl-1,3-dioxolane
英文别名
EHD
2-ethylidene-4-hexyl-1,3-dioxolane化学式
CAS
——
化学式
C11H20O2
mdl
——
分子量
184.279
InChiKey
LMNRYVNJUITJDC-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    4
  • 重原子数:
    13
  • 可旋转键数:
    5
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.82
  • 拓扑面积:
    18.5
  • 氢给体数:
    0
  • 氢受体数:
    2

反应信息

  • 作为反应物:
    描述:
    2-ethylidene-4-hexyl-1,3-dioxolaneβ-环糊精对甲苯磺酸 作用下, 以 四氢呋喃二甲基亚砜 为溶剂, 反应 1.0h, 生成
    参考文献:
    名称:
    Shell-Sheddable, pH-Sensitive Supramolecular Nanoparticles Based on Ortho Ester-Modified Cyclodextrin and Adamantyl PEG
    摘要:
    We report a new type of pH-sensitive supramolecular aggregates which possess a programmable character of sequential dePEGylation and degradation. As a platform of designing and building multifunctional supramolecular nanoparticles, a family of 6-OH ortho ester-modified beta-cyclodextrin (beta-CD) derivatives have been synthesized via the facile reaction between beta-CD and cyclic ketene acetals with different alkyl lengths. These asymmetric acid-labile beta-CD derivatives formed amphiphilic supramolecules with adamantane-modified PEG through host-guest interaction in polar solvents such as ethanol. The supramolecules can self-assemble in water to form acid-labile supramolecular aggregates. The results of TEM and light scattering measurements demonstrate that the size and morphology of the aggregates are influenced by the alkyl or PEG length and the host-guest feed ratio. By carefully balancing the alkyl and PEG lengths and adjusting the host-guest ratio, well-dispersed vesicles (50-100 nm) or sphere-like nanoparticles (200-500 nm) were obtained. Zeta potential measurements reveal that these supramolecular aggregates are capable of being surface-functionalized via dynamic host-guest interaction. The supramolecular aggregates were stable at pH 8.4 for at least 12 h as proven by the (1)H NMR and LLS measurements. However, rapid dePEGylation occurred at pH 7.4 due to the hydrolysis of the ortho ester linkages locating at the interface, which resulted in aggregation of the dePEGylated hydrophobic inner cores. Upon further decreasing the pH to 6.4, the hydrophobic cores were further degraded due to the acid-accelerated hydrolysis of the ortho esters. The incubation stability of the acid-labile supramolecular aggregates in neutral buffer could be improved by incorporating hydrophobic poly(e-caprolactone) into the core of the aggregates.
    DOI:
    10.1021/bm500711c
  • 作为产物:
    描述:
    参考文献:
    名称:
    Shell-Sheddable, pH-Sensitive Supramolecular Nanoparticles Based on Ortho Ester-Modified Cyclodextrin and Adamantyl PEG
    摘要:
    We report a new type of pH-sensitive supramolecular aggregates which possess a programmable character of sequential dePEGylation and degradation. As a platform of designing and building multifunctional supramolecular nanoparticles, a family of 6-OH ortho ester-modified beta-cyclodextrin (beta-CD) derivatives have been synthesized via the facile reaction between beta-CD and cyclic ketene acetals with different alkyl lengths. These asymmetric acid-labile beta-CD derivatives formed amphiphilic supramolecules with adamantane-modified PEG through host-guest interaction in polar solvents such as ethanol. The supramolecules can self-assemble in water to form acid-labile supramolecular aggregates. The results of TEM and light scattering measurements demonstrate that the size and morphology of the aggregates are influenced by the alkyl or PEG length and the host-guest feed ratio. By carefully balancing the alkyl and PEG lengths and adjusting the host-guest ratio, well-dispersed vesicles (50-100 nm) or sphere-like nanoparticles (200-500 nm) were obtained. Zeta potential measurements reveal that these supramolecular aggregates are capable of being surface-functionalized via dynamic host-guest interaction. The supramolecular aggregates were stable at pH 8.4 for at least 12 h as proven by the (1)H NMR and LLS measurements. However, rapid dePEGylation occurred at pH 7.4 due to the hydrolysis of the ortho ester linkages locating at the interface, which resulted in aggregation of the dePEGylated hydrophobic inner cores. Upon further decreasing the pH to 6.4, the hydrophobic cores were further degraded due to the acid-accelerated hydrolysis of the ortho esters. The incubation stability of the acid-labile supramolecular aggregates in neutral buffer could be improved by incorporating hydrophobic poly(e-caprolactone) into the core of the aggregates.
    DOI:
    10.1021/bm500711c
点击查看最新优质反应信息

文献信息

  • Shell-Sheddable, pH-Sensitive Supramolecular Nanoparticles Based on Ortho Ester-Modified Cyclodextrin and Adamantyl PEG
    作者:Ran Ji、Jing Cheng、Ting Yang、Cheng−Cheng Song、Lei Li、Fu-Sheng Du、Zi-Chen Li
    DOI:10.1021/bm500711c
    日期:2014.10.13
    We report a new type of pH-sensitive supramolecular aggregates which possess a programmable character of sequential dePEGylation and degradation. As a platform of designing and building multifunctional supramolecular nanoparticles, a family of 6-OH ortho ester-modified beta-cyclodextrin (beta-CD) derivatives have been synthesized via the facile reaction between beta-CD and cyclic ketene acetals with different alkyl lengths. These asymmetric acid-labile beta-CD derivatives formed amphiphilic supramolecules with adamantane-modified PEG through host-guest interaction in polar solvents such as ethanol. The supramolecules can self-assemble in water to form acid-labile supramolecular aggregates. The results of TEM and light scattering measurements demonstrate that the size and morphology of the aggregates are influenced by the alkyl or PEG length and the host-guest feed ratio. By carefully balancing the alkyl and PEG lengths and adjusting the host-guest ratio, well-dispersed vesicles (50-100 nm) or sphere-like nanoparticles (200-500 nm) were obtained. Zeta potential measurements reveal that these supramolecular aggregates are capable of being surface-functionalized via dynamic host-guest interaction. The supramolecular aggregates were stable at pH 8.4 for at least 12 h as proven by the (1)H NMR and LLS measurements. However, rapid dePEGylation occurred at pH 7.4 due to the hydrolysis of the ortho ester linkages locating at the interface, which resulted in aggregation of the dePEGylated hydrophobic inner cores. Upon further decreasing the pH to 6.4, the hydrophobic cores were further degraded due to the acid-accelerated hydrolysis of the ortho esters. The incubation stability of the acid-labile supramolecular aggregates in neutral buffer could be improved by incorporating hydrophobic poly(e-caprolactone) into the core of the aggregates.
查看更多

同类化合物

顺式-2-甲基-4-叔-丁基-1,3-二氧戊环 辛醛丙二醇缩醛 碘丙甘油 甜瓜醛丙二醇缩醛 甘油缩甲醛 甘油缩甲醛 环辛基甲醛乙烯缩醛 环戊二烯内过氧化物 环己丙胺,1-(1,3-二噁戊环-2-基)- 环丙羧酸,2-乙酰基-,甲基酯,(1R-顺)-(9CI) 氯乙醛缩乙二醇 柠檬醛乙二醇缩醛 异戊醛丙二醇缩醛 异丁醛-丙二醇缩醛 奥普碘铵 多米奥醇 多效缩醛 壬醛丙二醇缩醛 亲和素 二氰苯乙烯酮乙烯缩醛 乙酮,1-(2-环辛烯-1-基)-,(-)-(9CI) 乙基1,3-二氧戊环-4-羧酸酯 丙炔醛乙二醇缩醛 三甲基-[(2-甲基-1,3-二氧戊环-4-基)甲基]铵碘化物 三丁基(1,3-二恶烷-2-基甲基)溴化鏻 [2-(2-碘乙基)-1,3-二氧戊环-4-基]甲醇 6,8-二氧杂二螺[2.1.4.2]十一烷 6,7-二氧杂双环[3.2.1]辛-2-烯-8-羧酸 5H,8H-呋喃并[3,4:1,5]环戊二烯并[1,2-d]-1,3-二噁唑(9CI) 5-过氧化氢基-5-甲基-1,2-二恶烷-3-酮 5-嘧啶羧酸,4-(2-呋喃基)-1,2,3,4-四氢-6-甲基-2-羰基-,1-甲基乙基酯 5-(哌嗪-1-基)苯并呋喃-2-甲酰胺 5-(1,3-二氧杂烷-2-基)呋喃-2-磺酰氯 5-(1,3-二氧戊环-2-基)戊腈 5,5-二羟基戊醛 4a-乙基-2,4a,5,6,7,7a-六氢-4-(3-羟基苯基)-1-甲基-1H-1-吡喃并英并啶 4-甲基-2-戊基-1,3-二氧戊环 4-甲基-2-十一烷基-1,3-二氧戊环 4-甲基-2-[(1E)-1-戊烯-1-基]-1,3-二氧戊环 4-甲基-2-(三氯甲基)-1,3-二氧戊环 4-甲基-2-(2-(甲硫基)乙基)-1,3-二氧戊环 4-甲基-2-(1-丙烯基)-1,3-二氧戊环 4-甲基-1,3-二氧戊环 4-烯丙基-4-甲基-2-乙烯基-1,3-二氧戊环 4-溴-3,5,5-三甲基二氧戊环-3-醇 4-乙基-1,3-二氧戊环 4-丁基-1,3-二氧戊环 4-[1,3]二氧烷-2-亚甲基丁醛 4-(氯甲基)-2-十七烷基-1,3-二氧戊环 4-(氯甲基)-2-(2-呋喃基)-1,3-二氧戊环