Biomimetic asymmetric reduction of benzoxazinones and quinoxalinones using ureas as transfer catalysts
作者:Zi-Biao Zhao、Xiang Li、Mu-Wang Chen、Zongbao K. Zhao、Yong-Gui Zhou
DOI:10.1039/d0cc03091k
日期:——
Using ureas as transfer catalysts through hydrogen bonding activation, biomimetic asymmetric reduction of benzoxazinones and quinoxalinones with chiral and regenerable NAD(P)H models was described, giving chiral dihydrobenzoxazinones and dihydroquinoxalinones with high yields and excellent enantioselectivities. A key dihydroquinoxalinone intermediate of a BRD4 inhibitor was synthesized using biomimetic
protein domains in the reading process of epigenetic marks. Recent studies have demonstrated that human BET protein BRD4 which contains bromodomains plays a critical role in cell proliferation, cancer growth and virus-host pathogenesis. In this work, a chemical-core substitution strategy was employed to identify BRD4 bromodomain inhibitors that had new and different chemical cores featuring common chemical
BRD4 plays a key role in transcriptional regulation. Recent biological and pharmacological studies have demonstrated that bromodomain-containing protein 4 (BRD4) is a viable drug target for cancer treatment. In this study, we synthesized a series of dihydroquinoxalinone derivatives and evaluated their BRD4 inhibitory activities, obtaining compound 5i with IC50 value of 73nM of binding activity in BRD4(1)