reaction sequence a primary amine is formed in situ from the corresponding nitro compound. Reversible condensation with aldehydes forms the respective imines, which are finally reduced to the desired secondary amine. This synthesis of secondary amines is atom‐economical and environmentally attractive using cheap and readily available organic compounds as starting materials.
General and selective reductive amination of carbonyl compounds using a core–shell structured Co<sub>3</sub>O<sub>4</sub>/NGr@C catalyst
作者:Tobias Stemmler、Felix A. Westerhaus、Annette-Enrica Surkus、Marga-Martina Pohl、Kathrin Junge、Matthias Beller
DOI:10.1039/c4gc00536h
日期:——
The application of heterogenized non-noble metal-based catalysts in selective catalytic hydrogenation processes is still challenging. In this respect, the preparation of a well-defined cobalt-based catalyst was investigated by immobilization of the corresponding cobalt(II)-phenanthroline-chelate on Vulcan XC72R carbon powder. The formed coreâshell structured cobalt/cobalt oxide nanocomposites are encapsulated by nitrogen-enriched graphene layers. This promising cheap heterogeneous catalyst allows for an efficient domino reductive amination of carbonyl compounds with nitroarenes.
amines are selectively obtained from low value starting materials using hydrogen and a non-noble metal-based catalyst. The reductive amination of aldehydes from nitroarenes or nitroalkanes is efficiently catalyzed by a well-defined diamino molybdenum sulfide cluster in a one-pot homogeneous reaction. The integrity of the molecular cluster catalyst is preserved along the process.