摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

4-nitro-N-(2-(pyridin-2-yl)ethyl)benzenesulfonamide

中文名称
——
中文别名
——
英文名称
4-nitro-N-(2-(pyridin-2-yl)ethyl)benzenesulfonamide
英文别名
4-nitro-N-(2-pyridin-2-ylethyl)benzenesulfonamide
4-nitro-N-(2-(pyridin-2-yl)ethyl)benzenesulfonamide化学式
CAS
——
化学式
C13H13N3O4S
mdl
——
分子量
307.33
InChiKey
HAKAQEGXTAUIMP-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    1.6
  • 重原子数:
    21
  • 可旋转键数:
    5
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.15
  • 拓扑面积:
    113
  • 氢给体数:
    1
  • 氢受体数:
    6

反应信息

  • 作为反应物:
    描述:
    4-nitro-N-(2-(pyridin-2-yl)ethyl)benzenesulfonamide 在 palladium 10% on activated carbon 、 氢气 作用下, 以 乙醇 为溶剂, 生成 4-((3-chloro-1,4-dioxo-1,4-dihydronaphthalen-2-yl)amino)-N-(2-(pyridin-2-yl)ethyl)benzenesulfonamide
    参考文献:
    名称:
    Novel 1,4-naphthoquinone-based sulfonamides: Synthesis, QSAR, anticancer and antimalarial studies
    摘要:
    A novel series of 1,4-naphthoquinones (33-44) tethered by open and closed chain sulfonamide moieties were designed, synthesized and evaluated for their cytotoxic and antimalarial activities. All quinone-sulfonamide derivatives displayed a broad spectrum of cytotoxic activities against all of the tested cancer cell lines including HuCCA-1, HepG2, A549 and MOLT-3. Most quinones (33-36 and 38-43) exerted higher anticancer activity against HepG2 cell than that of the etoposide. The open chain analogs 36 and 42 were shown to be the most potent compounds. Notably, the restricted sulfonamide analog 38 with 6,7-dimethoxy groups exhibited the most potent antimalarial activity (IC50 = 2.8 mu M). Quantitative structure activity relationships (QSAR) study was performed to reveal important chemical features governing the biological activities. Five constructed QSAR models provided acceptable predictive performance (R-cv, 0.5647-0.9317 and RMSEcv 0.1231-0.2825). Four additional sets of structurally modified compounds were generated in silico (34a-34d, 36a-36k, 40a-40d and 42a-42k) in which their activities were predicted using the constructed QSAR models. A comprehensive discussion of the structure activity relationships was made and a set of promising compounds (i.e., 33, 36, 38, 42, 36d, 36f, 42e, 42g and 42f) was suggested for further development as anticancer and antimalarial agents. (C) 2015 Elsevier Masson SAS. All rights reserved.
    DOI:
    10.1016/j.ejmech.2015.09.001
  • 作为产物:
    描述:
    2-(2-氨乙基)吡啶对硝基苯磺酰氯 在 sodium hydroxide 作用下, 以 四氢呋喃 为溶剂, 反应 3.0h, 以61%的产率得到4-nitro-N-(2-(pyridin-2-yl)ethyl)benzenesulfonamide
    参考文献:
    名称:
    使用Cp * Ir(吡啶磺酰胺)Cl预催化剂对酮进行无碱转移加氢
    摘要:
    N-(2-(Pyridin-2-yl)ethyl)benzenesulfonamide derivatives and 1,1,1-trifluoro-N-(2-(pyridin-2-yl)ethyl)methanesulfonamide (1-4), along cat. with three-legged piano stool Cp*(IrCl)-Cl-III complexes (5-11) (Cp* = pentamethylcyclopentadienyl) bearing pyridinesulfonamide ligands with varying electronic parameters, were synthesized. These ligands and air-stable complexes were characterized by H-1 and C-13{H-1} NMR spectroscopy, elemental analysis, and single-crystal X-ray diffraction. Precatalysts, 5-11, were assessed for transfer hydrogenation of aryl, diaryl, dialkyl, linear, cycloaliphatic, and alpha,beta-unsaturated ketones, diones, beta-ketoesters, and a biomass-derived substrate with 2-propanol, using 1 mol % precatalyst. Catalysis was also efficient using a 0.1 mol % loading. Remarkably, all catalysis experiments can be conducted in air without dried and degassed substrates, and basic additives and halide abstractors are not required for high activity in transfer hydrogenation. Control experiments and a mercury poisoning experiment support a homogeneous catalyzed pathway. Overall, the fastest reactions are observed using electron-poor substrates and precatalysts bearing electron-rich ligands.
    DOI:
    10.1021/acs.organomet.5b00864
点击查看最新优质反应信息

文献信息

  • Base-Free Transfer Hydrogenation of Ketones Using Cp*Ir(pyridinesulfonamide)Cl Precatalysts
    作者:Andrew Ruff、Christopher Kirby、Benny C. Chan、Abby R. O’Connor
    DOI:10.1021/acs.organomet.5b00864
    日期:2016.2.8
    N-(2-(Pyridin-2-yl)ethyl)benzenesulfonamide derivatives and 1,1,1-trifluoro-N-(2-(pyridin-2-yl)ethyl)methanesulfonamide (1-4), along cat. with three-legged piano stool Cp*(IrCl)-Cl-III complexes (5-11) (Cp* = pentamethylcyclopentadienyl) bearing pyridinesulfonamide ligands with varying electronic parameters, were synthesized. These ligands and air-stable complexes were characterized by H-1 and C-13H-1} NMR spectroscopy, elemental analysis, and single-crystal X-ray diffraction. Precatalysts, 5-11, were assessed for transfer hydrogenation of aryl, diaryl, dialkyl, linear, cycloaliphatic, and alpha,beta-unsaturated ketones, diones, beta-ketoesters, and a biomass-derived substrate with 2-propanol, using 1 mol % precatalyst. Catalysis was also efficient using a 0.1 mol % loading. Remarkably, all catalysis experiments can be conducted in air without dried and degassed substrates, and basic additives and halide abstractors are not required for high activity in transfer hydrogenation. Control experiments and a mercury poisoning experiment support a homogeneous catalyzed pathway. Overall, the fastest reactions are observed using electron-poor substrates and precatalysts bearing electron-rich ligands.
  • Novel 1,4-naphthoquinone-based sulfonamides: Synthesis, QSAR, anticancer and antimalarial studies
    作者:Ratchanok Pingaew、Veda Prachayasittikul、Apilak Worachartcheewan、Chanin Nantasenamat、Supaluk Prachayasittikul、Somsak Ruchirawat、Virapong Prachayasittikul
    DOI:10.1016/j.ejmech.2015.09.001
    日期:2015.10
    A novel series of 1,4-naphthoquinones (33-44) tethered by open and closed chain sulfonamide moieties were designed, synthesized and evaluated for their cytotoxic and antimalarial activities. All quinone-sulfonamide derivatives displayed a broad spectrum of cytotoxic activities against all of the tested cancer cell lines including HuCCA-1, HepG2, A549 and MOLT-3. Most quinones (33-36 and 38-43) exerted higher anticancer activity against HepG2 cell than that of the etoposide. The open chain analogs 36 and 42 were shown to be the most potent compounds. Notably, the restricted sulfonamide analog 38 with 6,7-dimethoxy groups exhibited the most potent antimalarial activity (IC50 = 2.8 mu M). Quantitative structure activity relationships (QSAR) study was performed to reveal important chemical features governing the biological activities. Five constructed QSAR models provided acceptable predictive performance (R-cv, 0.5647-0.9317 and RMSEcv 0.1231-0.2825). Four additional sets of structurally modified compounds were generated in silico (34a-34d, 36a-36k, 40a-40d and 42a-42k) in which their activities were predicted using the constructed QSAR models. A comprehensive discussion of the structure activity relationships was made and a set of promising compounds (i.e., 33, 36, 38, 42, 36d, 36f, 42e, 42g and 42f) was suggested for further development as anticancer and antimalarial agents. (C) 2015 Elsevier Masson SAS. All rights reserved.
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫 龙胆紫 齐达帕胺 齐诺康唑 齐洛呋胺 齐墩果-12-烯[2,3-c][1,2,5]恶二唑-28-酸苯甲酯 齐培丙醇 齐咪苯 齐仑太尔 黑染料 黄酮,5-氨基-6-羟基-(5CI) 黄酮,6-氨基-3-羟基-(6CI) 黄蜡,合成物 黄草灵钾盐