作者:Yang Liu、Shoko Yamazaki、Suguru Izuhara
DOI:10.1016/j.jorganchem.2006.09.048
日期:2006.12
Modification of hydrogen-terminated Si(111) surfaces by hydrosilylation of activated alkenes and further chemical transformation of the modified surfaces is reported. A Si(111)-H surface was reacted with activated alkenes such as acrylate esters, acrylonitrile, and maleic anhydride under mild conditions to give modified surfaces with terminal functional groups. A modified surface with a terminal ester group was reduced by LiAlH4 to give a hydroxy-terminated surface, and the hydroxy-terminated surface was transformed to a bromo-terminated surface. XPS analysis revealed that the brominated surface ( Si(111)-CH2CH2CH2Br) had 32% coverage with the 3-bromopropyl group. Ester and amide formation reactions were carried out on hydroxy- and carboxy-terminated Si surfaces by reaction with tert-butoxycarbonyl glycine, glycine tort-butyl ester, 2,2,2-trifluoroethanol and 4-trifluoromethylbenzyl alcohol in the presence of carbodiimide. XPS characterization indicated that the esters and amide were successfully formed with coverage ranging from 16% to 58%. Coverage ratios of octadecyl ester modified surfaces were also estimated by combination of surface reduction and gas chromatography analysis to be 25-35%. (c) 2006 Elsevier B.V. All rights reserved.