摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

H-(2R,3S)β-MeTrp-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2

中文名称
——
中文别名
——
英文名称
H-(2R,3S)β-MeTrp-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2
英文别名
H-D-Trp(bR-Me)-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2;(2R)-N-[(2S,3R)-1-amino-3-hydroxy-1-oxobutan-2-yl]-2-[[(2S,3R)-2-[[(2S)-2-[[(2R)-2-[[(2S)-2-[[(2R)-2-[[(2R,3R)-2-amino-3-(1H-indol-3-yl)butanoyl]amino]-3-sulfanylpropanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-5-(diaminomethylideneamino)pentanoyl]amino]-3-hydroxybutanoyl]amino]-3-methyl-3-sulfanylbutanamide
H-(2R,3S)β-MeTrp-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2化学式
CAS
——
化学式
C54H74N14O11S2
mdl
——
分子量
1159.4
InChiKey
YCWDHLPZIHIYNZ-HOGAGRAASA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -0.1
  • 重原子数:
    81
  • 可旋转键数:
    29
  • 环数:
    5.0
  • sp3杂化的碳原子比例:
    0.43
  • 拓扑面积:
    432
  • 氢给体数:
    18
  • 氢受体数:
    15

反应信息

  • 作为反应物:
    描述:
    H-(2R,3S)β-MeTrp-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 在 potassium hexacyanoferrate(III) 作用下, 以 乙腈 为溶剂, 反应 2.0h, 以72.4%的产率得到H-(2R,3S)β-MeTrp-c[Cys-Tyr-D-Trp-Arg-Thr-Pen]-Thr-NH2
    参考文献:
    名称:
    Opiate Aromatic Pharmacophore Structure−Activity Relationships in CTAP Analogues Determined by Topographical Bias, Two-Dimensional NMR, and Biological Activity Assays
    摘要:
    Topographically constrained analogues of the highly mu-opioid-receptor-selective antagonist CTAP (H-D-Phe-c[Cys-Tyr-D-Trp-Arg-Thr-Pen]-Thr-NH2, 1) were prepared by solid-phase peptide synthesis. Replacement of the D-Phe residue with conformationally biased beta-methyl derivatives of phenylalanine or tryptophan (2R,3R; 2R,3S; 2S,3R; 2S,3S) yielded peptides that displayed widely varying types of biological activities. In an effort to correlate the observed biological activities of these analogues with their structures, two-dimensional H-1 NMR and molecular modeling was performed. Unlike the parent (1), which is essentially a pure mu antagonist with weak delta agonist activities in the MVD bioassay, the diastereomeric beta-MePhe(1)-containing peptides exhibited simultaneous delta agonism and mu antagonism by the (2R,3R)-containing isomer 2; mu antagonism by the (2R,3S)-containing isomer 3; weak mu agonism by the (2S,3R)-containing isomer 4; and delta agonism by the (2S,3S)-containing isomer 5. Incorporation of beta-MeTrp isomers into position 1 led to peptides that were mu antagonists (2R,3R), 8; (2R,3S), 9, or essentially inactive (<10%) in the MVD and GPI assays (2S,3R), 10; (2S,3S), 11. Interestingly, in vivo antinociceptive activity was predicted by neither MVD nor GPI bioactivity. When D-Trp was incorporated in position 1, the result (7) is a partial, yet relatively potent mu agonist which also displayed weak delta agonist activity. Molecular modeling based on 2D NMR revealed that low energy conformers of peptides with similar biological activities had similar aromatic pharmacophore orientations and interaromatic distances. Peptides that exhibit mu antagonism have interaromatic distances of 7.0-7.9 Angstrom and have their amino terminal aromatic moiety pointing in a direction opposite to the direction that the amino terminus points. Peptides with delta opioid activity displayed an interaromatic distance of <7 Angstrom and had their amino terminal aromatic moiety pointing in the same direction as the amino terminus.
    DOI:
    10.1021/jm9900218
  • 作为产物:
    描述:
    N-Boc-O-苄基-L-苏氨酸丁氧羰基-O-2,6-二氯苄基-L-酪氨酸Boc-cysteine(4-Me-Bn) 、 Nα-Boc-(2R,3R)-β-MeTrp (Nin-MeS) 、 alkaline earth salt of/the/ methylsulfuric acid 、 alkaline earth salt of/the/ methylsulfuric acid 以127.9 mg的产率得到H-(2R,3S)β-MeTrp-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2
    参考文献:
    名称:
    Opiate Aromatic Pharmacophore Structure−Activity Relationships in CTAP Analogues Determined by Topographical Bias, Two-Dimensional NMR, and Biological Activity Assays
    摘要:
    Topographically constrained analogues of the highly mu-opioid-receptor-selective antagonist CTAP (H-D-Phe-c[Cys-Tyr-D-Trp-Arg-Thr-Pen]-Thr-NH2, 1) were prepared by solid-phase peptide synthesis. Replacement of the D-Phe residue with conformationally biased beta-methyl derivatives of phenylalanine or tryptophan (2R,3R; 2R,3S; 2S,3R; 2S,3S) yielded peptides that displayed widely varying types of biological activities. In an effort to correlate the observed biological activities of these analogues with their structures, two-dimensional H-1 NMR and molecular modeling was performed. Unlike the parent (1), which is essentially a pure mu antagonist with weak delta agonist activities in the MVD bioassay, the diastereomeric beta-MePhe(1)-containing peptides exhibited simultaneous delta agonism and mu antagonism by the (2R,3R)-containing isomer 2; mu antagonism by the (2R,3S)-containing isomer 3; weak mu agonism by the (2S,3R)-containing isomer 4; and delta agonism by the (2S,3S)-containing isomer 5. Incorporation of beta-MeTrp isomers into position 1 led to peptides that were mu antagonists (2R,3R), 8; (2R,3S), 9, or essentially inactive (<10%) in the MVD and GPI assays (2S,3R), 10; (2S,3S), 11. Interestingly, in vivo antinociceptive activity was predicted by neither MVD nor GPI bioactivity. When D-Trp was incorporated in position 1, the result (7) is a partial, yet relatively potent mu agonist which also displayed weak delta agonist activity. Molecular modeling based on 2D NMR revealed that low energy conformers of peptides with similar biological activities had similar aromatic pharmacophore orientations and interaromatic distances. Peptides that exhibit mu antagonism have interaromatic distances of 7.0-7.9 Angstrom and have their amino terminal aromatic moiety pointing in a direction opposite to the direction that the amino terminus points. Peptides with delta opioid activity displayed an interaromatic distance of <7 Angstrom and had their amino terminal aromatic moiety pointing in the same direction as the amino terminus.
    DOI:
    10.1021/jm9900218
点击查看最新优质反应信息

文献信息

  • Opiate Aromatic Pharmacophore Structure−Activity Relationships in CTAP Analogues Determined by Topographical Bias, Two-Dimensional NMR, and Biological Activity Assays
    作者:G. Gregg Bonner、Peg Davis、Dagmar Stropova、Sidney Edsall、Henry I. Yamamura、Frank Porreca、Victor J. Hruby
    DOI:10.1021/jm9900218
    日期:2000.2.1
    Topographically constrained analogues of the highly mu-opioid-receptor-selective antagonist CTAP (H-D-Phe-c[Cys-Tyr-D-Trp-Arg-Thr-Pen]-Thr-NH2, 1) were prepared by solid-phase peptide synthesis. Replacement of the D-Phe residue with conformationally biased beta-methyl derivatives of phenylalanine or tryptophan (2R,3R; 2R,3S; 2S,3R; 2S,3S) yielded peptides that displayed widely varying types of biological activities. In an effort to correlate the observed biological activities of these analogues with their structures, two-dimensional H-1 NMR and molecular modeling was performed. Unlike the parent (1), which is essentially a pure mu antagonist with weak delta agonist activities in the MVD bioassay, the diastereomeric beta-MePhe(1)-containing peptides exhibited simultaneous delta agonism and mu antagonism by the (2R,3R)-containing isomer 2; mu antagonism by the (2R,3S)-containing isomer 3; weak mu agonism by the (2S,3R)-containing isomer 4; and delta agonism by the (2S,3S)-containing isomer 5. Incorporation of beta-MeTrp isomers into position 1 led to peptides that were mu antagonists (2R,3R), 8; (2R,3S), 9, or essentially inactive (<10%) in the MVD and GPI assays (2S,3R), 10; (2S,3S), 11. Interestingly, in vivo antinociceptive activity was predicted by neither MVD nor GPI bioactivity. When D-Trp was incorporated in position 1, the result (7) is a partial, yet relatively potent mu agonist which also displayed weak delta agonist activity. Molecular modeling based on 2D NMR revealed that low energy conformers of peptides with similar biological activities had similar aromatic pharmacophore orientations and interaromatic distances. Peptides that exhibit mu antagonism have interaromatic distances of 7.0-7.9 Angstrom and have their amino terminal aromatic moiety pointing in a direction opposite to the direction that the amino terminus points. Peptides with delta opioid activity displayed an interaromatic distance of <7 Angstrom and had their amino terminal aromatic moiety pointing in the same direction as the amino terminus.
查看更多

同类化合物

(甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (R)-乙基N-甲酰基-N-(1-苯乙基)甘氨酸 (R)-丙酰肉碱-d3氯化物 (R)-4-N-Cbz-哌嗪-2-甲酸甲酯 (R)-3-氨基-2-苄基丙酸盐酸盐 (R)-1-(3-溴-2-甲基-1-氧丙基)-L-脯氨酸 (N-[(苄氧基)羰基]丙氨酰-N〜5〜-(diaminomethylidene)鸟氨酸) (6-氯-2-吲哚基甲基)乙酰氨基丙二酸二乙酯 (4R)-N-亚硝基噻唑烷-4-羧酸 (3R)-1-噻-4-氮杂螺[4.4]壬烷-3-羧酸 (3-硝基-1H-1,2,4-三唑-1-基)乙酸乙酯 (2S,3S,5S)-2-氨基-3-羟基-1,6-二苯己烷-5-N-氨基甲酰基-L-缬氨酸 (2S,3S)-3-((S)-1-((1-(4-氟苯基)-1H-1,2,3-三唑-4-基)-甲基氨基)-1-氧-3-(噻唑-4-基)丙-2-基氨基甲酰基)-环氧乙烷-2-羧酸 (2S)-2,6-二氨基-N-[4-(5-氟-1,3-苯并噻唑-2-基)-2-甲基苯基]己酰胺二盐酸盐 (2S)-2-氨基-3-甲基-N-2-吡啶基丁酰胺 (2S)-2-氨基-3,3-二甲基-N-(苯基甲基)丁酰胺, (2S,4R)-1-((S)-2-氨基-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺盐酸盐 (2R,3'S)苯那普利叔丁基酯d5 (2R)-2-氨基-3,3-二甲基-N-(苯甲基)丁酰胺 (2-氯丙烯基)草酰氯 (1S,3S,5S)-2-Boc-2-氮杂双环[3.1.0]己烷-3-羧酸 (1R,4R,5S,6R)-4-氨基-2-氧杂双环[3.1.0]己烷-4,6-二羧酸 齐特巴坦 齐德巴坦钠盐 齐墩果-12-烯-28-酸,2,3-二羟基-,苯基甲基酯,(2a,3a)- 齐墩果-12-烯-28-酸,2,3-二羟基-,羧基甲基酯,(2a,3b)-(9CI) 黄酮-8-乙酸二甲氨基乙基酯 黄荧菌素 黄体生成激素释放激素 (1-5) 酰肼 黄体瑞林 麦醇溶蛋白 麦角硫因 麦芽聚糖六乙酸酯 麦根酸 麦撒奎 鹅膏氨酸 鹅膏氨酸 鸦胆子酸A甲酯 鸦胆子酸A 鸟氨酸缩合物