In vitro data indicate that bendamustine is primarily metabolized via hydrolysis to monohydroxy (HP1) and dihydroxy-bendamustine (HP2) metabolites with low cytotoxic activity. Two active minor metabolites, M3 and M4, are primarily formed via CYP1A2. However, concentrations of these metabolites in plasma are 1/10th and 1/100th that of the parent compound, respectively, suggesting that the cytotoxic activity is primarily due to bendamustine. Results of a human mass balance study confirm that bendamustine is extensively metabolized via hydrolytic, oxidative, and conjugative pathways.
... The detection of mercapturic acid pathway metabolites of bendamustine, namely, cysteine S-conjugates in human bile, which are supposed to subsequently undergo further metabolism /was recently reported/.. In this study, ... the identification and quantitation of consecutive bendamustine metabolites occurring in human bile using authentic reference standards and the synthesis and structural confirmation of these compounds /is described/. Mass spectrometry data along with high-performance liquid chromatography retention data (fluorescence detection) of the synthetic reference standards were consistent with those of the metabolites found in human bile after administration of bendamustine hydrochloride to cancer patients. Analysis of the purified synthetic reference compounds showed a purity of at least 95%. Structural confirmation was achieved by one- and two-dimensional proton as well as carbon-13 NMR spectroscopy and mass spectrometry. A total of 16 bendamustine-related compounds were detected in the bile of patients, 11 of them were recovered as conjugates. Eight conjugates have been structurally confirmed as novel mercapturic acids and sulfoxides. Biliary excretion of the sulfoxides was twice that of the mercapturate precursors. Glutathione S-conjugates of bendamustine have not been detected in bile samples, indicating rapid enzymatic cleavage in humans. Both the lack of glutathione (GSH) conjugates and occurrence of diastereomeric sulfoxides emphasize species-related differences in the GSH conjugation of bendamustine between humans and rats. The total amount recovered in the bile as the sum of all conjugates over the period of 24 hr after dosing averaged 5.2% of the administered dose.
In vitro data indicate that bendamustine is primarily metabolized via hydrolysis to metabolites with low cytotoxic activity. In vitro, studies indicate that two active minor metabolites, M3 and M4, are primarily formed via CYP1A2. However, concentrations of these metabolites in plasma are 1/10 and 1/100 that of the parent compound, respectively, suggesting that the cytotoxic activity is primarily due to bendamustine. In vitro studies using human liver microsomes indicate that bendamustine does not inhibit CYP1A2, 2C9/10, 2D6, 2E1, or 3A4/5. Bendamustine did not induce metabolism of CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2E1, or CYP3A4/5 enzymes in primary cultures of human hepatocytes.
Mild and transient elevations in serum aminotransferase levels are found in up to 20% of patients treated with bendamustine, but elevations above 5 times the upper limit of normal occur in less than 3% of patients. The abnormalities are generally transient, unaccompanied by symptoms and rarely require dose modification. Clinically apparent liver injury from bendamustine has been limited to a small number of cases of mild hepatitis with features of hypersensitivity including eosinophilia, rash or other systemic symptoms. Autoantibody formation is uncommon. The course is generally self-limited, but may require corticosteroid therapy for control of symptoms and timely recovery.
Bendamustine therapy has also been implicated in causing reactivation of hepatitis B in patients with anti-HBc in serum with or without HBsAg. In several instances patients were also receiving corticosteroids or rituximab, yet had received these without reactivation in the past. Reactivation arose after 2 to 6 cycles of bendamustine chemotherapy, presenting with symptoms accompanied by HBsAg and rising levels of HBV DNA in serum. Reactivation was generally self-limited and patients later became HBsAg negative. In one instance, however, the course was severe and resulted in death from acute liver failure.
Likelihood score: C (probable cause of clinically apparent liver injury, some of which is due to reactivation of hepatitis B).
参考文献:M Chen, V Vijay, Q Shi, Z Liu, H Fang, W Tong. 美国食品药品监督管理局批准的药物标签用于研究药物诱导的肝损伤,《药物发现今日》,16(15-16):697-703, 2011. PMID:21624500 DOI:10.1016/j.drudis.2011.05.007
M Chen, A Suzuki, S Thakkar, K Yu, C Hu, W Tong. DILIrank:根据人类发展药物诱导肝损伤风险排名的最大参考药物清单。《药物发现今日》2016, 21(4): 648-653. PMID:26948801 DOI:10.1016/j.drudis.2016.02.015
References:M Chen, V Vijay, Q Shi, Z Liu, H Fang, W Tong. FDA-Approved Drug Labeling for the Study of Drug-Induced Liver Injury, Drug Discovery Today, 16(15-16):697-703, 2011. PMID:21624500 DOI:10.1016/j.drudis.2011.05.007
M Chen, A Suzuki, S Thakkar, K Yu, C Hu, W Tong. DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans. Drug Discov Today 2016, 21(4): 648-653. PMID:26948801 DOI:10.1016/j.drudis.2016.02.015
Following a single IV dose of bendamustine hydrochloride Cmax typically occurred at the end of infusion. The dose proportionality of bendamustine has not been studied.
Mean recovery of total radioactivity in cancer patients following IV infusion of [14C] bendamustine hydrochloride was approximately 76% of the dose. Approximately 50% of the dose was recovered in the urine and approximately 25% of the dose was recovered in the feces. Urinary excretion was confirmed as a relatively minor pathway of elimination of bendamustine, with approximately 3.3% of the dose recovered in the urine as parent. Less than 1% of the dose was recovered in the urine as M3 and M4, and less than 5% of the dose was recovered in the urine as HP2.
The mean steady-state volume of distribution (Vss) of bendamustine was approximately 20-25 L. Steady-state volume of distribution for total radioactivity was approximately 50 L, indicating that neither bendamustine nor total radioactivity are extensively distributed into the tissues.
... Preclinical radiolabeled bendamustine studies showed that approximately 90% of drug administered was recovered in excreta primarily in the feces. Bendamustine clearance in humans is approximately 700 mL/minute. After a single dose of 120 mg/sq m bendamustine IV over 1-hour the intermediate half life of the parent compound is approximately 40 minutes. The mean apparent terminal elimination half life of M3 and M4 are approximately 3 hours and 30 minutes respectively. Little or no accumulation in plasma is expected for bendamustine administered on Days 1 and 2 of a 28-day cycle.
[EN] ACC INHIBITORS AND USES THEREOF<br/>[FR] INHIBITEURS DE L'ACC ET UTILISATIONS ASSOCIÉES
申请人:GILEAD APOLLO LLC
公开号:WO2017075056A1
公开(公告)日:2017-05-04
The present invention provides compounds I and II useful as inhibitors of Acetyl CoA Carboxylase (ACC), compositions thereof, and methods of using the same.
SULFONAMIDE, SULFAMATE, AND SULFAMOTHIOATE DERIVATIVES
申请人:Wang Zhong
公开号:US20120077814A1
公开(公告)日:2012-03-29
The disclosure provides biologically active compounds of formula (I):
and pharmaceutically acceptable salts thereof, compositions containing these compounds, and methods of using these compounds in a variety applications, such as treatment of diseases or disorders associated with E1 type activating enzymes, and with Nedd8 activating enzyme (NAE) in particular.
[EN] COMPOUNDS AND METHODS FOR THE TREATMENT OF NEURODEGENERATIVE DISEASES<br/>[FR] COMPOSÉS ET PROCÉDÉS POUR LE TRAITEMENT DE MALADIES NEURODÉGÉNÉRATIVES
申请人:TAVARES FRANCIS XAVIER
公开号:WO2016168118A1
公开(公告)日:2016-10-20
Novel compounds of formula (II) are disclosed. Compounds of formula (II) comprise ornithine derivatives or compounds that may metabolize to ornithine. Also disclosed are methods for the treatment of neurodegenerative diseases such as Alzheimer's Disease using compounds of formula (II).
SULFOXIMINE SUBSTITUTED QUINAZOLINES FOR PHARMACEUTICAL COMPOSITIONS
申请人:BLUM Andreas
公开号:US20140135309A1
公开(公告)日:2014-05-15
This invention relates to novel sulfoximine substituted quinazoline derivatives of formula I
wherein Ar, R
1
and R
2
are as defined herein, and their use as MNK1 (MNK1a or MNK1b) and/or MNK2 (MNK2a or MNK2b) kinase inhibitors, pharmaceutical compositions containing the same, and methods of using the same as agents for treatment or amelioration of MNK1 (MNK1a or MNK1b) and/or MNK2 (MNK2a or MNK2b) mediated disorders.
[EN] SULFOXIMINE SUBSTITUTED QUINAZOLINES FOR PHARMACEUTICAL COMPOSITIONS<br/>[FR] QUINAZOLINES SUBSTITUÉES PAR SULFOXIMINE POUR COMPOSITIONS PHARMACEUTIQUES
申请人:BOEHRINGER INGELHEIM INT
公开号:WO2014072244A1
公开(公告)日:2014-05-15
This invention relates to novel sulfoximine substituted quinazoline derivatives of formula (I), wherein Ar, R1 and R2 are as defined in the description and claims, and their use as MNK1 (MNK1a or MNK1b) and/or MNK2 (MNK2a or MNK2b) kinase inhibitors, pharmaceutical compositions containing the same, and methods of using the same as agents for treatment or amelioration of MNK1 (MNK1a or MNK1b) and/or MNK2 (MNK2a or MNK2b) mediated disorders.