摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(10alpha)-25-(乙酰氧基)-2beta,16alpha,20-三羟基-9beta-甲基-19-去甲羊毛甾-5-烯-3,11,22-三酮 | 13201-14-4

中文名称
(10alpha)-25-(乙酰氧基)-2beta,16alpha,20-三羟基-9beta-甲基-19-去甲羊毛甾-5-烯-3,11,22-三酮
中文别名
二氢葫芦素B
英文名称
23,24-dihydrocucurbitacin B
英文别名
dihydrocucurbitacin B;[(6R)-6-[(2S,8S,9R,10R,13R,14S,16R,17R)-2,16-dihydroxy-4,4,9,13,14-pentamethyl-3,11-dioxo-2,7,8,10,12,15,16,17-octahydro-1H-cyclopenta[a]phenanthren-17-yl]-6-hydroxy-2-methyl-5-oxoheptan-2-yl] acetate
(10alpha)-25-(乙酰氧基)-2beta,16alpha,20-三羟基-9beta-甲基-19-去甲羊毛甾-5-烯-3,11,22-三酮化学式
CAS
13201-14-4
化学式
C32H48O8
mdl
——
分子量
560.728
InChiKey
QZJJDOYZVRUEDY-NRNCYQGDSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    2.7
  • 重原子数:
    40
  • 可旋转键数:
    7
  • 环数:
    4.0
  • sp3杂化的碳原子比例:
    0.81
  • 拓扑面积:
    138
  • 氢给体数:
    3
  • 氢受体数:
    8

安全信息

  • 储存条件:
    2-8℃

SDS

SDS:6e7590990feb3e540a479ee0b22a75b0
查看

制备方法与用途

Dihydrocucurbitacin B 是塔优雅根中的一种三萜烯类化合物,能够抑制活化 T 细胞核因子,促使细胞周期停滞于 G0 期,并且还具有抑制迟发性超敏反应的作用。

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    (10alpha)-25-(乙酰氧基)-2beta,16alpha,20-三羟基-9beta-甲基-19-去甲羊毛甾-5-烯-3,11,22-三酮 在 potassium hydroxide 作用下, 以 甲醇N,N-二甲基甲酰胺 为溶剂, 反应 1.0h, 以86%的产率得到23,24-dihydrocucurbitacin E
    参考文献:
    名称:
    二氢葫芦素B和葫芦素B衍生物的合成及细胞毒活性评价
    摘要:
    两种葫芦素(dihydrocucurbitacin B(1)和葫芦素B(2))可以分别作为原料从野勃氏菌(Wilbrandia ebracteata)的根和uff的丝瓜(Luffa operculata)的果实中大量获得,作为制备库的起始材料。 29种半合成衍生物。进行的结构变化包括环A和B以及侧链中官能团的去除,修饰或置换。所有新的半合成化合物以及1和2在体外测试了它们对非小细胞肺癌细胞(A549细胞)的细胞毒性作用。这些化合物中的一些显示出对A549肿瘤细胞有效的中等活性,尤其是在环A修饰的葫芦素B衍生物。
    DOI:
    10.1016/j.bmc.2012.03.001
  • 作为产物:
    描述:
    葫芦素 B 在 5%-palladium/activated carbon 、 氢气 作用下, 以 乙醇 为溶剂, 反应 4.0h, 生成 (10alpha)-25-(乙酰氧基)-2beta,16alpha,20-三羟基-9beta-甲基-19-去甲羊毛甾-5-烯-3,11,22-三酮
    参考文献:
    名称:
    Cucurbitacin D Is a Disruptor of the HSP90 Chaperone Machinery
    摘要:
    Heat shock protein 90 (Hsp90) facilitates the maturation of many newly synthesized and unfolded proteins (clients) via the Hsp90 chaperone cycle, in which Hsp90 forms a heteroprotein complex and relies upon cochaperones, immunophilins, etc., for assistance in client folding. Hsp90 inhibition has emerged as a strategy for anticancer therapies due to the involvement of clients in many oncogenic pathways. Inhibition of chaperone function results in client ubiquitinylation and degradation via the proteasome, ultimately leading to tumor digression. Small molecule inhibitors perturb ATPase activity at the N-terminus and include derivatives of the natural product geldanamycin. However, N-terminal inhibition also leads to induction of the pro-survival heat shock response (HSR), in which displacement of the Hsp90-bound transcription factor, heat shock factor-1, translocates to the nucleus and induces transcription of heat shock proteins, including Hsp90. An alternative strategy for Hsp90 inhibition is disruption of the Hsp90 heteroprotein complex. Disruption of the Hsp90 heteroprotein complex is an effective strategy to prevent client maturation without induction of the HSR. Cucurbitacin D, isolated from Cucurbita texana, and 3-epi-isocucurbitacin D prevented client maturation without induction of the HSR. Cucurbitacin D also disrupted interactions between Hsp90 and two cochaperones, Cdc37 and p23.
    DOI:
    10.1021/acs.jnatprod.5b00054
点击查看最新优质反应信息

文献信息

  • Lipid-Lowering Activities of Cucurbitacins Isolated from <i>Trichosanthes cucumeroides</i> and Their Synthetic Derivatives
    作者:Xianjing Zhang、Huihui Li、Wenqiong Wang、Tong Chen、Lijiang Xuan
    DOI:10.1021/acs.jnatprod.0c00364
    日期:2020.12.24
    discover natural cholesterol-lowering compounds, dihydrocucurbitacin B, isolated from Trichosanthes cucumeroides roots, was found to promote LDL uptake by upregulating LDLR protein in a PCSK9-dependent process. In this study, an in-depth investigation of T. cucumeroides roots afforded 27 cucurbitacins (1–27), including seven new cucurbitacins (1–7), and their structures were elucidated by spectroscopic data
    在不断努力发现天然降胆固醇化合物的过程中,发现从葫芦科植物根中分离的二氢葫芦素 B通过在 PCSK9 依赖性过程中上调 LDLR 蛋白来促进 LDL 吸收。在这项研究中,对T. cucumeroides根的深入调查提供了 27 种葫芦素 ( 1 – 27 ),其中包括 7 种新的葫芦素 ( 1 – 7 ),并通过光谱数据分析阐明了它们的结构。为了深入了解它们的构效关系,葫芦素生物(B1 – 11和DB1 – 11) 合成。通过在 HepG2 细胞中的 LDL 摄取试验评估这些葫芦素的降脂活性显示,大多数化合物提高了 LDL 摄取率,其中六去甲异葫芦素 D ( 6 ) 和异葫芦素 D ( 21 ) 表现出最高的活性(率为 2.53 )。和 2.47),与阳性对照 nagilactone B(比率为 2.07)相当。根据蛋白质印迹分析的机制研究,化合物6和21剂量依赖性地增加了 LDLR 蛋白平并降低了
  • Chemical Modification Produces Species-Specific Changes in Cucurbitacin Antifeedant Effect
    作者:Karen Luise Lang、Emilio Deagosto、Lara Almida Zimmermann、Vanessa Rocha Machado、Lílian Sibelle Campos Bernardes、Eloir Paulo Schenkel、Fernando Javier Duran、Jorge Palermo、Carmen Rossini
    DOI:10.1021/jf4002457
    日期:2013.6.12
    Cucurbitacins are secondary metabolites that mediate insect plant interactions not only as allomones against generalists but also as kairomones for specialist herbivores. This study was undertaken to identify the potential of cucurbitacin derivatives as insect antifeedant agents. The antifeedant capacity against a Cucurbitaceae specialist [Epilachna paenulata (Coleoptera: Coccinellidae)] and a polyphagous insect [Pseudaletia adultera (Lepidoptera: Noctuidae)] was evaluated in preference tests in which the insects were given a choice between food plants either treated with the cucurbitacin derivatives or treated with the solvent. The activity was found not to be related to the basic cucurbitacin skeleton, as only IS of the 28 tested cucurbitacin derivatives were active. Only one of the tested compounds was phagostimulant to the specialist insect (the hemissuccinate of 16-oxo-dihydrocucurbitacin B derivative), while all other active derivatives were deterrent against one of the insects (13 compounds) or both of them (3 compounds). Changes in ring A of the cucurbitacins, as well as in the side chain, modified the activity. As a general trend, when chemical modifications of the basic structure produced a change in activity, the response was opposite in both insects used as biodetectors, indicating that a selective variation in the activity may be achieved by chemical modifications of the cucurbitacin skeleton.
  • Notes- Structure of the Side Chain of Cucurbitacin B
    作者:A Melera、W Schlegel、C Noller
    DOI:10.1021/jo01084a653
    日期:1959.2
  • Bitter Principles from Echinocystis Fabacea<sup>1</sup>
    作者:W. O. EISENHUT、C. R. NOLLER
    DOI:10.1021/jo01106a048
    日期:1958.12
  • Reduction and Oxidation Products of Cucurbitacin B<sup>1</sup>
    作者:W. SCHLEGEL、A. MELERA、C. R. NOLLER
    DOI:10.1021/jo01063a053
    日期:1961.4
查看更多

同类化合物

(5β)-17,20:20,21-双[亚甲基双(氧基)]孕烷-3-酮 (5α)-2′H-雄甾-2-烯并[3,2-c]吡唑-17-酮 (3β,20S)-4,4,20-三甲基-21-[[[三(异丙基)甲硅烷基]氧基]-孕烷-5-烯-3-醇-d6 (25S)-δ7-大发酸 (20R)-孕烯-4-烯-3,17,20-三醇 (11β,17β)-11-[4-({5-[(4,4,5,5,5-五氟戊基)磺酰基]戊基}氧基)苯基]雌二醇-1,3,5(10)-三烯-3,17-二醇 齐墩果酸衍生物1 黄麻属甙 黄芪皂苷III 黄芪皂苷 II 黄芪甲苷 IV 黄芪甲苷 黄肉楠碱 黄果茄甾醇 黄杨醇碱E 黄姜A 黄夹苷B 黄夹苷 黄夹次甙乙 黄夹次甙乙 黄夹次甙丙 黄体酮环20-(乙烯缩醛) 黄体酮杂质EPL 黄体酮杂质1 黄体酮杂质 黄体酮杂质 黄体酮EP杂质M 黄体酮EP杂质G(RRT≈2.53) 黄体酮EP杂质F 黄体酮6-半琥珀酸酯 黄体酮 17alpha-氢过氧化物 黄体酮 11-半琥珀酸酯 黄体酮 麦角甾醇葡萄糖苷 麦角甾醇氢琥珀酸盐 麦角甾烷-6-酮,2,3-环氧-22,23-二羟基-,(2b,3b,5a,22R,23R,24S)-(9CI) 麦角甾烷-3,6,8,15,16-五唑,28-[[2-O-(2,4-二-O-甲基-b-D-吡喃木糖基)-a-L-呋喃阿拉伯糖基]氧代]-,(3b,5a,6a,15b,16b,24x)-(9CI) 麦角甾烷-26-酸,5,6:24,25-二环氧-14,17,22-三羟基-1-羰基-,d-内酯,(5b,6b,14b,17a,22R,24S,25S)-(9CI) 麦角甾-8-烯-3-醇 麦角甾-8,24(28)-二烯-26-酸,7-羟基-4-甲基-3,11-二羰基-,(4a,5a,7b,25S)- 麦角甾-7,22-二烯-3-酮 麦角甾-7,22-二烯-17-醇-3-酮 麦角甾-5,24-二烯-26-酸,3-(b-D-吡喃葡萄糖氧基)-1,22,27-三羟基-,d-内酯,(1a,3b,22R)- 麦角甾-5,22,25-三烯-3-醇 麦角甾-4,6,8(14),22-四烯-3-酮 麦角甾-1,4-二烯-3-酮,7,24-二(乙酰氧基)-17,22-环氧-16,25-二羟基-,(7a,16b,22R)-(9CI) 麦角固醇 麦冬皂苷D 麦冬皂苷D 麦冬皂苷 B