Synthetic manifestation of nitro substituted tetrazole-N-(hetero)aryl derivatives and energetic studies
作者:Nagarjuna Kommu、M. Balaraju、Vikas D. Ghule、Akhila K. Sahoo
DOI:10.1039/c6ta10621h
日期:——
substituted tetrazole-N-aryl/heteroaryl derivatives is discussed here. The energetic functional groups –NO2, –NHNO2 and –N3 are reliably inserted into the molecular backbone, making the tetrazole-N-aryl derivatives highly energetic and insensitive to heat and impact. For example, the tetrazole derivatives 7 and 8, bearing a –NO2 or a –NHNO2 group, exhibit energetic properties close to RDX, but with enhanced
A series of novel heterocyclic-substituted 2-(1H)-quinolone compounds have been prepared, including the 3,4-dihydro derivatives thereof, wherein the heterocyclic ring moiety is a pyrrolyl, imidazolyl, pyrazolyl, triazolyl or tetrazolyl group attached by a nitrogen atom of said group to the 5-, 6-, 7- or 8-positions of the quinolone ring. These particular compounds are useful in therapy as highly potent inotropic agents and therefore, are of value in the treatment of various cardiac conditions. Preferred member compounds include 6-(2,4-dimethylimidazol-1-yl)-8-methyl-2-(1H)-quinolone, 6-(2,4-dimethyl-5-nitroimadazol-1-yl)-8-methyl-2-(1H)-quinolone, 8-methyl-6-(tetrazol-1-yl)-2-(1H)-quinolone, 8-methyl-6-(1,2,4-triazol-4-yl)-2-(1H)-quinolone, and 6-(4-cyano-2-methylimidazol-1-yl)-8-methyl-2-(1H)-quinolone, respectively. Methods for preparing these compounds from known starting materials are provided.
A quinolone inotropic agent of the formula
or a pharmaceutically acceptable salt thereof, wherein «Het» is an optionally substituted 5-membered monocyclic aromatic heterocyclic group containing at least one nitrogen atom in the aromatic ring and attached by a nitrogen atom of said ring to the 5-, 6-, 7-or 8-position of said quinolone;
R, which is attached to the 5-, 6-, 7- or 8-position, is hydrogen, C1-C4 alkyl, C1-C4 alkoxy, hydroxy, CF3, halo, cyano or hydroxymethyl;
and the dashed line between the 3- and 4-positions represents an optional bond.
A series of novel heterocyclic-substituted 2-(1H)-quinolone compounds have been prepared, including the 3,4-dihydro derivatives thereof, wherein the heterocyclic ring moiety is a pyrrolyl, imidazolyl, pyrazolyl, triazolyl or tetrazolyl group attached by a nitrogen atom of said group to the 5-, 6-, 7- or 8-positions of the quinolone ring. These particular compounds are useful in therapy as highly potent inotropic agents and therefore, are of value in the treatment of various cardiac conditions. Preferred member compounds include 6-(2,4-dimethylimidazol-1-yl)-8-methyl-2-(1H)-quinolone, 6-(2,4-dimethyl-5-nitroimidazol-1-yl)-8-methyl-2-(1H)-quinolone, 8-methyl-6-(tetrazol-1-yl)-2-(1H)-quinolone, 8-methyl-6-(1,2,4-triazol-4-yl)-2-(1H)-quinolone, and 6-(4-cyano-2-methylimidazol-1-yl)-8-methyl-2-(1H)-quinolone, respectively. Methods for preparing these compounds from known starting materials are provided.
A series of novel heterocyclic-substituted 2-(1H)-quinolone compounds have been prepared, including the 3,4-dihydro derivatives thereof, wherein the heterocyclic ring moiety is a pyrrolyl, imidazolyl, pyrazolyl, triazolyl or tetrazolyl group attached by a nitrogen atom of said group to the 5-, 6-, 7- or 8-positions of the quinolone ring. These particular compounds are useful in therapy as highly potent inotropic agents and therefore, are of value in the treatment of various cardiac conditions. Preferred member compounds include 6-(2,4-dimethylimidazol-1-yl)-8-methyl-2-(1H)-quinolone, 6-(2,4-dimethyl-5-nitroimidazol-1-yl)-8-methyl-2-(1H)-quinolone, 8-methyl-6-(tetrazol-1-yl)-2-(1H)-quinolone, 8-methyl-6-(1,2,4-triazol-4-yl)-2-(1H)-quinolone, and 6-(4-cyano-2-methylimidazol-1-yl)-8-methyl-2-(1H)-quinolone, respectively. Methods for preparing these compounds from known starting material are provided.