摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

1-硝基-3,5-二亚硝基-1,3,5-三氮杂环己烷 | 80251-29-2

中文名称
1-硝基-3,5-二亚硝基-1,3,5-三氮杂环己烷
中文别名
——
英文名称
hexahydro-1,3-dinitroso-5-nitro-1,3,5-triazine
英文别名
1,3-dinitroso-5-nitro-1,3,5-triazacyclohexane;1-Nitro-3,5-dinitroso-1,3,5-triazinane
1-硝基-3,5-二亚硝基-1,3,5-三氮杂环己烷化学式
CAS
80251-29-2
化学式
C3H6N6O4
mdl
——
分子量
190.118
InChiKey
HXLUHUHPTTZBCS-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    0.6
  • 重原子数:
    13
  • 可旋转键数:
    0
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    1.0
  • 拓扑面积:
    114
  • 氢给体数:
    0
  • 氢受体数:
    9

SDS

SDS:fa7c822ac7ed125c4e43fa9810191d6d
查看

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
    黑索金 1,3,5-trinitro-1,3,5-triazinane 121-82-4 C3H6N6O6 222.117

反应信息

  • 作为产物:
    参考文献:
    名称:
    Mechanisms of Nitramine Thermolysis
    摘要:
    The thermal decomposition of a number of nitramines was studied in dilute solution and in the melt, The nitramines included acyclic mononitramines [dimethylnitramine (DMN), diethylnitramine (DEN), dipropylnitramine (DPN), and diisopropylnitramine (DIPN)], cyclic mononitramines [N-nitropiperidine (NPIP) and N-nitropyrrolidine (NPyr)], cyclic dinitramines [N-dinitropiperazine (pDNP), 1,3-dinitro-1,3-diazacyclopentane (DNI), and 1,3-dinitro-1,3-diazacyclohexane (mDNP)], and 1,3,5-trinitro-1,3,5-triazocyclohexane (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), hexanitrohexaazaisowurtzitane (HNIW), and 1,3,3-trinitroazetidine (TNAZ). For the acyclic and cyclic mono- and dinitramines, the corresponding nitrosamines were the only or major condensed-phase product. Kinetics and activation parameters were determined for the thermolysis of dilute solutions (0.01-1.0 wt %) over the range 200-300 degrees C. The thermolyses were found to be first-order with the rate constants unaffected by the use of deuterated solvent. As the nitramines became more complex than dimethylnitramine (DMN), the rate of decomposition increased and the product distribution became more complex. As the length of the aliphatic chain increased (DMN < DEN < DPN), the rate of thermolysis increased, yet nitrosamine remained the only observed condensed-phase product. When a secondary carbon was attached to the N-nitramine (DIPN) rather than the primary (DPN), the rate of decomposition increased and a new condensed-phase product was observed. Among the cyclic nitramines, the rate of decomposition increased as the number of NNO2 groups increased (NPIP < pDNP; NPyr < DNI; mDMP < RDX). The position of the nitramine groups affected the decomposition: meta NNO2 groups (mDNP) decomposed faster than para (pDNP). Ring strain decreased stability: mDNP < DNI; HMX < RDX. In complex nitramines, the increase in decomposition rate, the appearance of new products, and the change in the relative importance of nitrosamine and of N-2 and N2O are attributed to new decomposition routes available to them. However, since complex nitramines (e.g. RDX) maintain first-order kinetics and since most have activation energies in the range of 40-50 kcal/mol, it is believed that the triggering mechanism remains N-NO2 homolysis. Intramolecular hydrogen transfer is also considered an important mode of nitramine decomposition.
    DOI:
    10.1021/j100079a019
点击查看最新优质反应信息

文献信息

  • Mechanisms of Nitramine Thermolysis
    作者:J. C. Oxley、A. B. Kooh、R. Szekeres、W. Zheng
    DOI:10.1021/j100079a019
    日期:1994.7
    The thermal decomposition of a number of nitramines was studied in dilute solution and in the melt, The nitramines included acyclic mononitramines [dimethylnitramine (DMN), diethylnitramine (DEN), dipropylnitramine (DPN), and diisopropylnitramine (DIPN)], cyclic mononitramines [N-nitropiperidine (NPIP) and N-nitropyrrolidine (NPyr)], cyclic dinitramines [N-dinitropiperazine (pDNP), 1,3-dinitro-1,3-diazacyclopentane (DNI), and 1,3-dinitro-1,3-diazacyclohexane (mDNP)], and 1,3,5-trinitro-1,3,5-triazocyclohexane (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), hexanitrohexaazaisowurtzitane (HNIW), and 1,3,3-trinitroazetidine (TNAZ). For the acyclic and cyclic mono- and dinitramines, the corresponding nitrosamines were the only or major condensed-phase product. Kinetics and activation parameters were determined for the thermolysis of dilute solutions (0.01-1.0 wt %) over the range 200-300 degrees C. The thermolyses were found to be first-order with the rate constants unaffected by the use of deuterated solvent. As the nitramines became more complex than dimethylnitramine (DMN), the rate of decomposition increased and the product distribution became more complex. As the length of the aliphatic chain increased (DMN < DEN < DPN), the rate of thermolysis increased, yet nitrosamine remained the only observed condensed-phase product. When a secondary carbon was attached to the N-nitramine (DIPN) rather than the primary (DPN), the rate of decomposition increased and a new condensed-phase product was observed. Among the cyclic nitramines, the rate of decomposition increased as the number of NNO2 groups increased (NPIP < pDNP; NPyr < DNI; mDMP < RDX). The position of the nitramine groups affected the decomposition: meta NNO2 groups (mDNP) decomposed faster than para (pDNP). Ring strain decreased stability: mDNP < DNI; HMX < RDX. In complex nitramines, the increase in decomposition rate, the appearance of new products, and the change in the relative importance of nitrosamine and of N-2 and N2O are attributed to new decomposition routes available to them. However, since complex nitramines (e.g. RDX) maintain first-order kinetics and since most have activation energies in the range of 40-50 kcal/mol, it is believed that the triggering mechanism remains N-NO2 homolysis. Intramolecular hydrogen transfer is also considered an important mode of nitramine decomposition.
查看更多

同类化合物

黑索金 羟乙基六氢均三嗪 甲醛肟三聚物盐酸盐 溴美那明 溴异氰脲酸类味精盐 扁桃酸乌洛托品 季铵盐-15 四氢化-5-(2-羟乙基)-1,3-双(羟甲基)-1,3,5-三嗪-2(1H)-酮 四氢-5-丙基-1,3,5-三嗪-2(1H)-酮 四氢-5-(2-羟基乙基)-1,3-二(羟基甲基)-1,3,5-三嗪-2(1H)-硫酮 四氢-5-(2-羟基乙基)-1,3,5-三嗪-2(1H)-硫酮 四氢-3,5-二甲基-1,3,5-三嗪-1(2H)-丙胺 四氢-1,3-双(羟基甲基)-5-丙基-1,3,5-三嗪-2(1H)-酮 四氢-1,3-二(羟基甲基)-1,3,5-三嗪-2(1H)-酮 四氢-1,3,5-三嗪-2(1H)-酮 发泡剂H 六氢三甲基-S-三嗪 六氢-2,4,6-三甲基-1,3,5-三嗪 六氢-1-亚硝基-3,5-二硝基-1,3,5-三嗪 六氢-1,3,5-三辛基-1,3,5-三嗪 六氢-1,3,5-三环己基-S-三嗪 六氢-1,3,5-三戊基-1,3,5-三嗪 六氢-1,3,5-三嗪-1,3,5-三(乙腈) 六氢-1,3,5-三[3-(环氧乙烷基甲氧基)-1-氧代丙基]-1,3,5-三嗪 六亚甲基四胺氢碘酸盐 六亚甲基四胺单硼烷 六亚甲基四胺,二硝酸盐 全氟-1,3,5-三氮杂环己烷 全氘代六甲桥基四胺 乌洛托品 三溴化环己烷四胺 alpha,alpha'-二甲基-1,3,5-三嗪-1,3,5(2H,4H,6H)-三乙醇 A,A’,A’’-三甲基-1,3,5-三嗪-1,3,5(2H,4H,6H)-三乙醇 6-乙基-6-甲基-1,3,5-三嗪烷-2,4-二酮 5-硝基屈 5-甲基-1,3,5-三嗪-2-硫酮 5-异丙基-1,3,5-三嗪烷-2-硫酮 5-叔-丁基-1,3,5-三嗪烷-2-酮 5-乙基-1,3-二(羟基甲基)-1,3,5-三嗪烷-2-酮 5-乙基-1,3,5-三嗪烷-2-硫酮 5-丁基四氢-1,3-二(羟甲基)-1,3,5-三嗪-2(1H)-酮 5-丁基-1,3,5-三嗪烷-2-硫酮 5-(2-羟基乙基)-1,3,5-三嗪烷-2-酮 3,7-二硝基-1,3,5,7-四氮杂双环[3.3.1]壬烷 3,7-二乙酰基-1,3,5,7-四氮杂二环[3.3.1]壬烷 3,4,5,6-四氢-5-甲基-1,3,5-三嗪-2(1H)-酮 2-氯乙基膦酸六亚甲基四胺盐 2,4-二羰基六氢-1,3,5-三嗪 2,4,6-三乙基-1,3,5-三嗪烷 1-硝基-3,5-二亚硝基-1,3,5-三氮杂环己烷