Discovery, synthesis and SAR analysis of novel selective small molecule S1P4-R agonists based on a (2Z,5Z)-5-((pyrrol-3-yl)methylene)-3-alkyl-2-(alkylimino)thiazolidin-4-one chemotype
摘要:
High affinity and selective S1P(4) receptor (S1P(4)-R) small molecule agonists may be important proof-of-principle tools used to clarify the receptor biological function and effects to assess the therapeutic potential of the S1P4-R in diverse disease areas including treatment of viral infections and thrombocytopenia. A high-throughput screening campaign of the Molecular Libraries-Small Molecule Repository was carried out by our laboratories and identified (2Z,5Z)-5-((1-(2-fluorophenyl)-2,5-dimethyl-1H-pyrrol-3-yl)methylene)-3-methyl-2-(methylimino) thiazolidin-4-one as a promising S1P(4)-R agonist hit distinct from literature S1P(4)-R modulators. Rational chemical modifications of the hit allowed the identification of a promising lead molecule with low nanomolar S1P(4)-R agonist activity and exquisite selectivity over the other S1P(1-3,5)-Rs family members. The lead molecule herein disclosed constitutes a valuable pharmacological tool to explore the effects of the S1P(4)-R signaling cascade and elucidate the molecular basis of the receptor function. (C) 2011 Elsevier Ltd. All rights reserved.
1-Alkylindole-3-carboxaldehydes 1 and pyrrole-3-carboxaldehydes 2 on stirring with indium (2 equiv.) and allyl bromide (3 equiv.) in THF-H2O undergo deoxygenative diallylation at the carbonyl carbon to provide 3-[1,6-diene-4-yl]- indole 3 and pyrrole 4 derivatives. The formation of the normal 1,2-addition product in the case of 1d (R = COOEt) points towards the contribution of electronic factors due to the enamine double bond in the deoxygenation process. (C) 2002 Published by Elsevier Science Ltd.
Discovery and Structure–Activity Relationships of Pyrrolone Antimalarials
作者:Dinakaran Murugesan、Alka Mital、Marcel Kaiser、David M. Shackleford、Julia Morizzi、Kasiram Katneni、Michael Campbell、Alan Hudson、Susan A. Charman、Clive Yeates、Ian H. Gilbert
DOI:10.1021/jm400009c
日期:2013.4.11
In the pursuit of new antimalarial leads, a phenotypic screening of various commercially sourced compound libraries was undertaken by the World Health Organisation Programme for Research and Training in Tropical Diseases (WHO-TDR). We report here the detailed characterization of one of the hits from this process, TDR32750 (8a), which showed potent activity against Plasmodium falciparum K1 (EC50 similar to 9 nM), good selectivity (>2000-fold) compared to a mammalian cell line (L6), and significant activity against a rodent model of malaria when administered intraperitoneally. Structure-activity relationship studies have indicated ways in which the molecule could be optimized. This compound represents an exciting start point for a drug discovery program for the development of a novel antimalarial.
FRITZ H.; SCHENK S., J. LIEBIGS ANN. CHEM. <JLAC-BF>, 1975, NO 2, 255-265