摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

2,2,2-三氟-N-(6-氧代-5,6-二氢-4H-环戊并[b]噻吩-4-基)乙酰胺 | 108046-14-6

中文名称
2,2,2-三氟-N-(6-氧代-5,6-二氢-4H-环戊并[b]噻吩-4-基)乙酰胺
中文别名
2,2,2-三氟-1-(4-羟基苯基)乙酮
英文名称
2,2,2-trifluoro-N-(5,6-dihydro-6-oxo-4H-cyclopenta[b]thiophen-4-yl)acetamide
英文别名
4,5-dihydro-4-trifluoroacetylaminocyclopentathiophen-6-one;4-trifluoroacetylamino-4,5-dihydrocyclopentathiophen-6-one;2,2,2-trifluoro-N-(6-oxo-4,5-dihydrocyclopenta[b]thiophen-4-yl)acetamide;2,2,2-Trifluoro-N-(6-oxo-5,6-dihydro-4H-cyclopenta[b]thiophen-4-yl)acetamide
2,2,2-三氟-N-(6-氧代-5,6-二氢-4H-环戊并[b]噻吩-4-基)乙酰胺化学式
CAS
108046-14-6
化学式
C9H6F3NO2S
mdl
MFCD03012801
分子量
249.213
InChiKey
FKVBTDCXJXCSIZ-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    130-132°C
  • 沸点:
    358.6±42.0 °C(Predicted)
  • 密度:
    1.54±0.1 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    1.7
  • 重原子数:
    16
  • 可旋转键数:
    1
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.333
  • 拓扑面积:
    74.4
  • 氢给体数:
    1
  • 氢受体数:
    6

安全信息

  • 危险等级:
    IRRITANT
  • 危险品标志:
    Xi
  • 海关编码:
    2934999090
  • 危险类别:
    IRRITANT

SDS

SDS:3f6e7cca8ac94d2da780f0114f40059b
查看

上下游信息

  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    2,2,2-三氟-N-(6-氧代-5,6-二氢-4H-环戊并[b]噻吩-4-基)乙酰胺盐酸 作用下, 反应 0.5h, 以90%的产率得到4-氨基-4,5-二氢-6H-环戊并[b]噻吩-6-酮盐酸盐
    参考文献:
    名称:
    Effective cerebral antihypoxic activity of new aminocyclopentanones
    摘要:
    Effective antihypoxic activity of new aminocyclopentanones which was higher than that of the reference compounds has been demonstrated by the SCR hypoxia test.
    DOI:
    10.1016/0223-5234(92)90029-z
  • 作为产物:
    描述:
    3-噻吩甲醛 在 ammonium acetate 、 三氟乙酸 作用下, 以 乙醇 为溶剂, 反应 12.5h, 生成 2,2,2-三氟-N-(6-氧代-5,6-二氢-4H-环戊并[b]噻吩-4-基)乙酰胺
    参考文献:
    名称:
    Using entropy of drug and protein graphs to predict FDA drug-target network: Theoretic-experimental study of MAO inhibitors and hemoglobin peptides from Fasciola hepatica
    摘要:
    There are many drugs described with very different affinity to a large number of receptors. In this work, we selected Drug-Target pairs (DTPs/nDTPs) of drugs with high affinity/non-affinity for different targets like proteins. Quantitative Structure-Activity Relationships (QSAR) models become a very useful tool in this context to substantially reduce time and resources consuming experiments. Unfortunately, most QSAR models predict activity against only one protein. To solve this problem, we developed here a multi-target QSAR (mt-QSAR) classifier using the MARCH-INSIDE technique to calculate structural parameters of drug and target plus one Artificial Neuronal Network (ANN) to seek the model. The best ANN model found is a Multi-Layer Perceptron (MLP) with profile MLP 32:32-15-1:1. This MLP classifies correctly 623 out of 678 DTPs (Sensitivity = 91.89%) and 2995 out of 3234 nDTPs (Specificity = 92.61%), corresponding to training Accuracy = 92.48%. The validation of the model was carried out by means of external predicting series. The model classifies correctly 313 out of 338 DTPs (Sensitivity = 92.60%) and 1411 out of 1534 nDTP (Specificity = 91.98%) in validation series, corresponding to total Accuracy = 92.09% for validation series (Predictability). This model favorably compares with other LDA and ANN models developed in this work and Machine Learning classifiers published before to address the same problem in different aspects. These mt-QSARs offer also a good opportunity to construct drug-protein Complex Networks (CNs) that can be used to explore large and complex drug-protein receptors databases. Finally, we illustrated two practical uses of this model with two different experiments. In experiment 1, we report prediction, synthesis, characterization, and MAO-A and MAO-B pharmacological assay of 10 rasagiline derivatives promising for anti-Parkinson drug design. In experiment 2, we report sampling, parasite culture, SEC and 1DE sample preparation, MALDI-TOF MS and MS/MS analysis, MASCOT search, MM/MD 3D structure modeling, and QSAR prediction for different peptides of hemoglobin found in the proteome of the human parasite Fasciola hepatica; which is promising for anti-parasite drug targets discovery. (C) 2011 Elsevier Masson SAS. All rights reserved.
    DOI:
    10.1016/j.ejmech.2011.01.023
点击查看最新优质反应信息

文献信息

  • Design, synthesis and biological evaluation of novel indano- and thiaindano-pyrazoles with potential interest for Alzheimer's disease
    作者:David Genest、Christophe Rochais、Cédric Lecoutey、Jana Sopkova-de Oliveira Santos、Céline Ballandonne、Sabrina Butt-Gueulle、Remi Legay、Marc Since、Patrick Dallemagne
    DOI:10.1039/c3md00041a
    日期:——
    The synthesis of eighteen novel (thia)indanopyrazole derivatives was achieved starting from amino(thia)indanones. Some of them displayed a dual binding site acetylcholinesterase inhibition which makes them potentially interesting for Alzheimer's disease treatment.
    从氨基(噻)茚酮开始,合成了 18 种新型(噻)茚并吡唑衍生物。其中一些衍生物显示出双结合位点乙酰胆碱酯酶抑制作用,这使它们具有治疗阿尔茨海默病的潜在意义。
  • Cyclisation de l'acide amino-3 (thienyl-3)-3 propionique en aminocyclopentathiophenes
    作者:P Dallemagne、S Rault、H.Cugnon de Sévricourt、Kh.M Hassan、M Robba
    DOI:10.1016/s0040-4039(00)84596-7
    日期:1986.1
  • Dallemagne, Patrick; Rault, Sylvain; Maume, Daniel, Heterocycles, 1987, vol. 26, # 6, p. 1449 - 1453
    作者:Dallemagne, Patrick、Rault, Sylvain、Maume, Daniel、Robba, Max
    DOI:——
    日期:——
  • Dallemagne, Patrick; Rault, Sylvain; Sevricourt, Michel Cugnon de, Heterocycles, 1988, vol. 27, # 7, p. 1637 - 1642
    作者:Dallemagne, Patrick、Rault, Sylvain、Sevricourt, Michel Cugnon de、Robba, Max
    DOI:——
    日期:——
  • DALLEMAGNE, PATRICK;RAULT, SYLVAIN;SEVRICOURT, MICHEL CUGNON DE;ROBBA, MA+, HETEROCYCLES, 27,(1988) N, C. 1637-1642
    作者:DALLEMAGNE, PATRICK、RAULT, SYLVAIN、SEVRICOURT, MICHEL CUGNON DE、ROBBA, MA+
    DOI:——
    日期:——
查看更多