摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

洛哌丁胺 | 53179-11-6

中文名称
洛哌丁胺
中文别名
4-(4-氯苯基)-4-羟基-N,N-二甲基-Α,Α-二苯基-1-哌啶丁酰胺;氯苯哌丁胺;4-[4-(4-氯苯基)-4-羟基哌啶-1-基]-N,N-二甲基-2,2-二苯基丁酰胺;4-对氯苯-4-羟基-N,N-二甲基-α,α-二苯-1-对哌啶基丁酰胺
英文名称
loperamide
英文别名
loperamide hydrochloride;imodium;(4-[4-(4-chlorophenyl)-4-hydroxypiperidin-1-yl]-N,N-dimethyl-2,2-diphenylbutanamide);LPA;4-(4-chlorophenyl)-4-hydroxy-N,N-dimethyl-α,α-diphenyl-1-piperidinebutanamide;4-[4-(4-chlorophenyl)-4-hydroxypiperidin-1-yl]-N,N-dimethyl-2,2-diphenylbutanamide
洛哌丁胺化学式
CAS
53179-11-6
化学式
C29H33ClN2O2
mdl
——
分子量
477.046
InChiKey
RDOIQAHITMMDAJ-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    647.2±55.0 °C(Predicted)
  • 密度:
    1.187±0.06 g/cm3(Predicted)
  • LogP:
    2.641 at 25℃ and pH6.95
  • 物理描述:
    Solid
  • 熔点:
    222.1
  • 溶解度:
    In water, 405 mg/L at 25 °C (est)
  • 蒸汽压力:
    7.91X10-16 mm Hg at 25 °C (est)
  • 解离常数:
    pKa1 9.41 (strongest basic); pKa2 13.96 (strongest acidic) (est) /Loperamide hydrochloride/
  • 碰撞截面:
    222.7 Ų [M+H]+ [CCS Type: TW, Method: Major Mix IMS/Tof Calibration Kit (Waters)]

计算性质

  • 辛醇/水分配系数(LogP):
    5
  • 重原子数:
    34
  • 可旋转键数:
    7
  • 环数:
    4.0
  • sp3杂化的碳原子比例:
    0.34
  • 拓扑面积:
    43.8
  • 氢给体数:
    1
  • 氢受体数:
    3

ADMET

代谢
洛哌丁胺被广泛代谢。主要的代谢途径是通过CYP2C8和CYP3A4介导的氧化N-脱甲基化,形成N-脱甲基洛哌丁胺。CYP2B6和CYP2D6在洛哌丁胺的N-脱甲基化中起次要作用。洛哌丁胺的代谢物在药理上是无效的。
Loperamide is extensively metabolized. The primary metabolic pathway is oxidative N-demethylation mediated by CYP2C8 and CYP3A4, to form N-demethyl loperamide. CYP2B6 and CYP2D6 play a minor role in loperamide N-demethylation. Metabolites of loperamide are pharmacologically inactive.
来源:DrugBank
代谢
洛哌丁胺几乎完全通过肝脏提取,在那里它主要被代谢、结合并通过胆汁排出。氧化N-脱甲基是洛哌丁胺的主要代谢途径,主要通过CYP3A4和CYP2C8介导。由于这种非常高的首过效应,未改变药物的血浆浓度保持极低。
Loperamide is almost completely extracted by the liver, where it is predominantly metabolized, conjugated and excreted via the bile. Oxidative N-demethylation is the main metabolic pathway for loperamide, and is mediated mainly through CYP3A4 and CYP2C8. Due to this very high first pass effect, plasma concentrations of unchanged drug remain extremely low.
来源:Hazardous Substances Data Bank (HSDB)
代谢
与线粒体神经毒素N-甲基-4-苯基-1,2,3,6-四氢吡啶(MPTP)和神经安定剂氟哌啶醇引起的帕金森病样效应相比,目前还没有关于结构上相关的N-取代-4-芳基哌啶-4-醇衍生物和抗腹泻药洛哌酰胺对中枢神经系统(CNS)产生不良影响的报告。尽管这种差异可以归因于洛哌酰胺的P-糖蛋白底物特性,阻止其进入大脑,但另一种可能性是洛哌酰胺在人体内的代谢与MPTP和氟哌啶醇不同,并不涉及生物激活生成神经毒性的吡啶物种。在当前研究中,特别关注于识别吡啶代谢物,对洛哌酰胺的生物激活进行了检查。在大鼠和人体肝脏微粒体中观察到了洛哌酰胺的NADPH依赖性消失(人体t(1/2) = 13分钟;大鼠t(1/2) = 22分钟)。洛哌酰胺的代谢在人和大鼠中相似,主要代谢途径为N-脱烷基化生成N-去甲基洛哌酰胺(M3)。洛哌酰胺生物转化的其他途径包括N-和C-氧化分别生成洛哌酰胺-N-氧化物(M4)和卡宾醇酰胺(M2)代谢物。此外,在人和大鼠肝脏微粒体中,还形成了另一种代谢物(M5)。根据液相色谱/串联质谱特性与通过化学反应从洛哌酰胺获得的吡啶物种比较,M5的结构被指定为吡啶物种(LPP(+))。人体微粒体中洛哌酰胺的代谢对酮康唑和安非他酮处理敏感,表明P4503A4和-2B6的参与。重组P4503A4催化了人体肝脏微粒体中洛哌酰胺的所有生物转化途径,而P4502B6仅负责N-脱烷基化和N-氧化途径。尽管洛哌酰胺(与MPTP和氟哌啶醇相比)代谢为潜在的神经毒性吡啶物种,但其广泛的安全边际可能源于多种因素的综合作用,包括通常限制在几天的治疗疗程,以及洛哌酰胺和可能的LPP(+)是P-糖蛋白底物,被阻止进入中枢神经系统。氟哌啶醇和洛哌酰胺安全剖面的差异,尽管有共同的生物激活事件,支持了并非所有在体外进行生物激活的化合物必然会在体内引起毒理学反应的观点。
In contrast with the Parkinson's-like effects associated with the mitochondrial neurotoxin N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and the neuroleptic agent haloperidol, there exist no reports on adverse central nervous system (CNS) effects with the structurally related N-substituted-4-arylpiperidin-4-ol derivative and antidiarrheal agent loperamide. Although this difference can be attributed to loperamide's P-glycoprotein substrate properties that prevent it from accessing the brain, an alternative possibility is that loperamide metabolism in humans is different from that of MPTP and haloperidol and does not involve bioactivation to a neurotoxic pyridinium species. In the current study, loperamide bioactivation was examined with particular focus on identification of pyridinium metabolites. A NADPH-dependent disappearance of loperamide was observed in both rat and human liver microsomes (human t(1/2) = 13 min; rat t(1/2) = 22 min). Loperamide metabolism was similar in human and rat and involved N-dealkylation to N-desmethylloperamide (M3) as the principal metabolic fate. Other routes of loperamide biotransformation included N- and C-hydroxylation to the loperamide-N-oxide (M4) and carbinolamide (M2) metabolites, respectively. Furthermore, the formation of an additional metabolite (M5) was also discernible in human and rat liver microsomes. The structure of M5 was assigned to the pyridinium species (LPP(+)) based on comparison of the liquid chromatography/tandem mass spectrometry characteristics to the pyridinium obtained from loperamide via a chemical reaction. Loperamide metabolism in human microsomes was sensitive to ketoconazole and bupropion treatment, suggesting P4503A4 and -2B6 involvement. Recombinant P4503A4 catalyzed all of the loperamide biotransformation pathways in human liver microsomes, whereas P4502B6 was only responsible for N-dealkylation and N-oxidation routes. The wide safety margin of loperamide (compared with MPTP and haloperidol) despite metabolism to a potentially neurotoxic pyridinium species likely stems from a combination of factors that include a therapeutic regimen normally restricted to a few days and the fact that loperamide and perhaps LPP(+) are P-glycoprotein substrates and are denied entry into the CNS. The differences in safety profile of haloperidol and loperamide despite a common bioactivation event supports the notion that not all compounds undergoing bioactivation in vitro will necessarily elicit a toxicological response in vivo.
来源:Hazardous Substances Data Bank (HSDB)
代谢
洛哌丁胺已知的人类代谢物包括N-去甲基洛哌丁胺。
Loperamide has known human metabolites that include N-Desmethyloperamide.
来源:NORMAN Suspect List Exchange
毒理性
  • 毒性总结
识别和使用:洛哌丁胺是一种固体。洛哌丁胺用于控制和缓解急性非特异性腹泻以及与炎症性肠病相关的慢性腹泻。人类暴露和毒性:洛哌丁胺是一种非处方抗腹泻药,具有μ-阿片受体激动剂活性。由于生物利用度低和中枢神经系统渗透性最小,治疗口服剂量后不会观察到中枢神经系统阿片效应。然而,超治疗口服剂量后会出现中枢神经系统阿片效应。口服洛哌丁胺滥用作为阿片类药物替代品已在试图自我治疗阿片类药物成瘾的患者中见到。在口服洛哌丁胺滥用后,已报告室性心律失常和QRS持续时间及QTc间期延长。在上市后经验中,罕见报告与腹胀相关的麻痹性肠梗阻。这些病例大多发生在急性痢疾患者、药物过量后或2岁以下儿童中。动物研究:洛哌丁胺给药显著抑制了大鼠的觅食行为并减少了它们的体重。给麻醉大鼠静脉注射洛哌丁胺导致血压和心率立即下降。在一项大鼠研究中,使用洛哌丁胺剂量高达最大人类剂量的133倍(按毫克/千克计算),持续18个月,没有致癌性的证据。比格犬每周六天,连续12个月以5.0、1.25和0.31毫克/千克的剂量服用胶囊中的洛哌丁胺。在药物给药的第一周,1.25和5毫克/千克剂量下观察到一些抑郁现象。在实验的其余时间内,行为和外观正常,只是在5毫克/千克剂量下偶尔看到血便,0.31和1.25毫克/千克剂量下看到软便,尤其是在药物给药的前6周。将初次怀孕的大鼠从妊娠第6天到第15天以40、10和2.5毫克/100克食物的剂量给予洛哌丁胺。在第22天,通过剖腹产取出胎儿。在40毫克/100克食物的剂量下,只有20只雌性大鼠中有1只怀孕。与对照组以及2.5和10毫克/100克食物剂量组在怀孕率、每只母体的着床数、窝大小、活胎、死胎和吸收胎儿的百分比、左右子宫角中活胎、死胎和吸收胎儿的分布以及活仔体重方面没有显著差异。没有看到宏观、内脏或骨骼畸形。体内和体外研究的结果表明,洛哌丁胺不具有基因毒性。
IDENTIFICATION AND USE: Loperamide is a solid. Loperamide is used in the control and symptomatic relief of acute nonspecific diarrhea and of chronic diarrhea associated with inflammatory bowel disease. HUMAN EXPOSURE AND TOXICITY: Loperamide is an over-the-counter antidiarrheal with mu-opioid agonist activity. Central nervous system opioid effects are not observed after therapeutic oral dosing because of poor bioavailability and minimal central nervous system penetration. However, central nervous system opioid effects do occur after supratherapeutic oral doses. Oral loperamide abuse as an opioid substitute has been seen among patients attempting to self-treat their opioid addiction. Ventricular dysrhythmias and prolongation of the QRS duration and QTc interval have been reported after oral loperamide abuse. In postmarketing experiences, paralytic ileus associated with abdominal distention has been reported rarely. Most of these cases occurred in patients with acute dysentery, following overdosage of the drug, or in children younger than 2 years of age. ANIMAL STUDIES: Loperamide administration significantly suppressed foraging behavior in rats and reduced their body weight. The intravenous injection of loperamide induced an immediate fall in blood pressure and heart rate in anesthetized rats. In a study in rats using loperamide dosages up to 133 times the maximum human dosage (on a mg/kg basis) for 18 months, there was no evidence of carcinogenicity. Beagle dogs were given loperamide in gelatin capsules at 5.0, 1.25 and 0.31 mg/kg six days a week for 12 months. Some depression was seen during the first week of drug administration at 1.25 and 5 mg/kg. Behavior and appearance were normal during the rest of the experiment, except that hemorrhagic stools were seen from time to time at 5 mg/kg and soft stools at 0.31 and 1.25 mg/kg, especially during the first 6 weeks of drug administration. Pregnant primiparous female rats were given loperamide in their diet at 40, 10 and 2.5 mg/100 g of food from day 6 through day 15 of pregnancy. On day 22, fetuses were delivered by caesarean section. At 40 mg/100 g food, only 1 female out of 20 became pregnant. There was no significant difference between the control group and the 2.5 and 10 mg/100 g food-dosed groups in pregnancy rate; number of implantations per dam; litter size, percentage of live, dead and resorbed fetuses; distribution of live, dead and resorbed fetuses in the left and right uterine horns; and body weight of live young. No macroscopic, visceral, or skeletal malformations were seen. Results of in vivo and in vitro studies carried out indicated that loperamide is not genotoxic.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 肝毒性
洛哌丁胺是目前使用的多数阿片类药物之一,其治疗并未与血清酶水平升高有关联。目前还没有确凿的个案报告表明,洛哌丁胺会引起特异质急性、临床上明显的肝脏损伤。其缺乏肝毒性的原因可能与使用低剂量和没有显著的系统性吸收有关。洛哌丁胺被吸收的部分在肝脏中代谢。 关于洛哌丁胺的安全性和潜在肝毒性的参考资料,请参见阿片类药物概述部分。最后更新日期:2019年5月20日 药物类别:胃肠药;阿片类药物
As with most opiates in current use, therapy with loperamide has not been linked to serum enzyme elevations. There have been no convincing cases of idiosyncratic acute, clinically apparent liver injury attributed to either agent. The reason for its lack of hepatotoxicity may relate to the low doses used and lack of significant systemic absorption. What loperamide is absorbed is metabolized in the liver. References on the safety and potential hepatotoxicity of loperamide are given in the overview section of the Opioids. Last updated: 20 May 2019 Drug Class: Gastrointestinal Agents; Opioids
来源:LiverTox
毒理性
  • 药物性肝损伤
化合物:洛哌丁胺
Compound:loperamide
来源:Drug Induced Liver Injury Rank (DILIrank) Dataset
毒理性
  • 药物性肝损伤
DILI 注释:无 DILI(药物性肝损伤)担忧
DILI Annotation:No-DILI-Concern
来源:Drug Induced Liver Injury Rank (DILIrank) Dataset
毒理性
  • 药物性肝损伤
标签部分:没有匹配项
Label Section:No match
来源:Drug Induced Liver Injury Rank (DILIrank) Dataset
吸收、分配和排泄
  • 吸收
洛哌丁胺在胃肠道吸收良好;然而,它经历了广泛的首过代谢,形成在胆汁中排泄的代谢物。因此,实际上只有很少的洛哌丁胺进入系统循环。该药物的生物利用度小于1%。在口服2毫克洛哌丁胺胶囊后,未改变药物的血浆浓度低于2 ng/mL。口服洛哌丁胺胶囊后大约五小时,血浆洛哌丁胺浓度最高,而液体配方给药后2.5小时最高。
Loperamide is well absorbed from the gastrointestinal tract; however, it undergoes extensive first-pass metabolism to form metabolites that are excreted in the bile. Therefore, little loperamide actually reaches the systemic circulation. The drug bioavailability is less than 1%. Following oral administration of a 2 mg capsule of loperamide, plasma concentrations of unchanged drug were below 2 ng/mL. Plasma loperamide concentrations are highest approximately five hours after administration of an oral capsule of loperamide and 2.5 hours after the liquid formulation of the drug.
来源:DrugBank
吸收、分配和排泄
  • 消除途径
洛哌丁胺及其代谢物在系统循环中经过胆汁排泄。未改变的洛哌丁胺及其代谢物主要通过粪便排出。只有1%的吸收剂量以未改变的形式在尿液中排出。
Loperamide and its metabolites in the systemic circulation undergo biliary excretion. Excretion of the unchanged loperamide and its metabolites mainly occurs through the feces. Only 1% of an absorbed dose excreted unchanged in the urine.
来源:DrugBank
吸收、分配和排泄
  • 分布容积
洛哌丁胺具有较大的分布体积。尽管具有很强的亲脂性,洛哌丁胺不能穿过血脑屏障,通常在周围发挥作用。
Loperamide has a large volume of distribution. Although highly lipophilic, loperamide does not cross the blood-brain barrier and generally acts peripherally.
来源:DrugBank
吸收、分配和排泄
氚标记的洛哌丁胺以口服方式给予八组各五只禁食的雄性Wistar大鼠(体重250 +/- 10克),剂量为1.25毫克/千克。收集尿液和粪便,持续多达4天。大鼠在给药后不同时间点(从1小时到96小时)被处死,以检查血液、器官和组织。在其中一只大鼠中,胆管插管持续48小时。测量每个样本的放射性含量,并通过逆同位素稀释技术和冷冻干燥法确定洛哌丁胺、代谢物和不挥发性放射性的比例。只有5%的药物及其代谢物从尿液中回收,大部分随粪便排出。药物血浆水平在所有时间点都较低。未改变的洛哌丁胺的最大血浆水平不超过给药剂量的0.22%,相当于大约75微克/毫升血浆。给药1小时后,消化道含有约85%的洛哌丁胺。大脑水平极低,从未超过22纳克/克脑组织,或给药剂量的0.005%。存在肠肝循环的证据,但药物进入一般循环的摄取量较低。总放射活性与非挥发性放射活性的区分表明,大部分剩余器官放射活性是由于氚水。
Tritium-labelled loperamide was administered orally to eight groups of five fasted male Wistar rats (250 +/- 10 g) at a dosage of 1.25 mg/kg. Urine and feces were collected for up to 4 days. The rats were killed at different times from 1 to 96 hours after drug administration in order to examine blood, organs and tissues. In one rat, the bile was cannulated for 48 hours. The radioactive content of each sample was measured and the fractions due to loperamide, metabolites, and volatile radioactivity were determined by the inverse isotope dilution technique and lyophilization. Only 5% of the drug and its metabolites was recovered from the urine, the bulk being excreted with the feces. Drug plasma levels were low at all times. Maximum plasma levels of unchanged loperamide did not exceed 0.22% of the administered dose corresponding to about 75 mg/mL of plasma. The gastrointestinal tract contained about 85% of loperamide 1 hour after dosing. Brain levels were extremely low, never exceeding 22 ng/g brain tissue, or 0.005% of the administered dose. The existence of an enterohepatic shunt was shown, but the uptake of the drug into the general circulation was low. Differentiation between total radioactivity and nonvolatile radioactivity demonstrated that most of the residual organ radioactivity was due to tritiated water.
来源:Hazardous Substances Data Bank (HSDB)
吸收、分配和排泄
三名男性志愿者口服了2.0毫克3H-洛哌丁胺(比活性为64 mCi/mM),药物装在明胶胶囊中。在给药前获得了血液、尿液和粪便的控制样本。之后在1、2、4、8、24、72和168小时采集了肝素处理的血液。尿液收集了七天,粪便收集了八天。测量了每个样本的放射性含量,并通过逆同位素稀释技术和冷冻干燥法确定了洛哌丁胺、代谢物和不挥发性放射性的比例。口服给药的3H-洛哌丁胺在人体内的命运似乎与大鼠相似。洛哌丁胺的血浆峰浓度出现在治疗后的4小时,且小于2纳克/毫升或约等于给药剂量的0.3%。大约1%的给药剂量未改变随尿液排出,6%作为非挥发性代谢物排出。大约40%的给药剂量随粪便排出,主要在前四天内;其中30%的量是由于药物未改变。
Three male volunteers received orally 2.0 mg of 3H-loperamide (specific activity 64 mCi/mM) in gelatine capsules. Control samples of blood, urine and feces were obtained before administration. Blood was collected on heparin 1, 2, 4, 8, 24, 72 and 168 hours thereafter. Urine was collected for seven days and feces for eight days. The radioactive content of each sample was measured and the fractions due to loperamide, metabolites and volatile radioactivity were determined by the inverse isotope dilution technique and lyophilization. The fate of orally administered 3H-loperamide in man appeared to be similar to that in rats. The peak plasma level of loperamide occurred 4 hours after treatment and was less than 2 ng/mL or about 0.3% of the administered dose. About 1% of the administered dose was excreted unaltered with the urine and 6% as nonvolatile metabolites. About 40% of the administered dose was excreted with the feces, mainly within the first four days; 30% of this amount was due to unchanged drug.
来源:Hazardous Substances Data Bank (HSDB)

安全信息

  • 危险品标志:
    Xi,C
  • 安全说明:
    S26,S36/37/39,S37/39,S45
  • 危险类别码:
    R20/21/22,R36/37/38,R37/38,R34,R41
  • WGK Germany:
    3
  • RTECS号:
    FF2200000
  • 海关编码:
    29252000
  • 危险品运输编号:
    UN 2735 8/PG 3

SDS

SDS:d8800ac23a7c9158656b017dc37031fe
查看

制备方法与用途

化学性质

盐酸洛哌丁胺(Loperamide Hydrochloride):C29H33ClN2O2·HCl。[34552-83-5]。

从异丙醇结晶,熔点为222~223℃。在0.1mol/L盐酸/2-丙醇(10ml/90ml)溶液中的最大吸收波长分别为:253、259、265和273nm(ε值分别为532、648、581和233)。

溶解度如下(g/100ml):

  • 水(pH值1.7):0.14
  • 柠檬酸盐-磷酸盐(pH值6.1):0.008
  • 柠檬酸盐-磷酸盐(pH值7.9):<0.001
  • 甲醇:28.6
  • 乙醇:5.37
  • 2-丙醇:1.11
  • 二氯甲烷:35.1
  • 丙酮:0.20
  • 乙酸乙酯:0.035
  • 乙醚:<0.001
  • 己烷:<0.001
  • 甲苯:0.001
  • 二甲基甲酰胺:10.3
  • 四氢呋喃:0.32
  • 4-甲基-2-戊酮:0.020
  • 丙二醇:5.64
  • 聚乙二醇400:1.40
  • 二甲亚砜:20.5
  • 2-丁酮:0.18

pKa值为8.66。在生理pH值范围内几乎不溶于水(0.002%)。稳定,在一般条件下可贮存数年。不吸湿,对光不敏感。

急性毒性
  • 小鼠(皮下注射):75mg/kg
  • 小鼠(口服):105mg/kg
  • 大鼠(口服,7天):185mg/kg
用途

盐酸洛哌丁胺是一种极强的长效抗腹泻药。其化学结构类似于氟哌啶醇和哌替啶,但治疗量下对中枢神经系统无任何作用。

适用于急性腹泻以及各种病因引起的慢性腹泻,如溃疡性结肠炎、非特异性结肠炎、肠道易激综合征以及胃、肠部分切除术后或甲亢引起的慢性腹泻的治疗。

洛哌丁胺为苯基哌啶类止泻药,具有长效作用,用于治疗功能性腹泻及因胃肠切除或肠器质性损害等引起腹泻,疗效显著。小鼠口服LD50为105mg/kg,大鼠(7天)为185mg/kg。

生产方法

以二苯乙腈为原料,在氨基钠存在下与环氧乙烷反应后用盐酸水解,再在室温下用48%HBr-HAc开环,经氯化、二甲胺化后与4-对氯苯基-4-羟基哌啶在甲基异丁基酮及碳酸钠存在下缩合制得洛哌丁胺。以二苯乙腈计,总收率13.4%。

具体步骤如下:

  1. 二苯乙腈(I)和氨基钠作用后,在5~10℃通入环氧乙烷,保温反应,得化合物(Ⅱ),收率66%。
  2. 往化合物(I)中加入36%溴化氢的冰乙酸溶液,在25~30℃搅拌。过滤,水洗至pH值5,干燥得化合物(Ⅲ),收率88%。
  3. 化合物(Ⅲ)用氯化亚砜氯化为化合物(Ⅳ),收率95%。
  4. 化合物(Ⅳ)和碳酸钠溶于甲苯和水,在0~5℃通入二甲胺,保温。水层用氯仿提取,提取液浓缩。残物用甲基异丁基酮重结晶得化合物(V),收率56%。
  5. 化合物(V)、4-对氯苯基-4-羟基哌啶、甲基异丁基酮及碳酸钠在室温缩合制得洛哌丁胺,收率58%。

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    洛哌丁胺双氧水 作用下, 以 甲醇 为溶剂, 反应 168.0h, 生成 loperamide oxide
    参考文献:
    名称:
    A chemoselective deoxygenation of N-oxides by sodium borohydride–Raney nickel in water
    摘要:
    A simple and convenient protocol for deoxygenation of aliphatic and aromatic N-oxides to the corresponding amines in good to excellent yield using sodium borohydride-Raney nickel in water is reported. Other functional moieties such as alkenes, halides, ethers, and amides are unaffected under the present reaction condition. (C) 2010 Elsevier Ltd. All rights reserved.
    DOI:
    10.1016/j.tetlet.2010.08.045
  • 作为产物:
    描述:
    loperamide oxide 在 sodium tetrahydroborate 作用下, 以 乙醇 为溶剂, 以95%的产率得到洛哌丁胺
    参考文献:
    名称:
    A chemoselective deoxygenation of N-oxides by sodium borohydride–Raney nickel in water
    摘要:
    A simple and convenient protocol for deoxygenation of aliphatic and aromatic N-oxides to the corresponding amines in good to excellent yield using sodium borohydride-Raney nickel in water is reported. Other functional moieties such as alkenes, halides, ethers, and amides are unaffected under the present reaction condition. (C) 2010 Elsevier Ltd. All rights reserved.
    DOI:
    10.1016/j.tetlet.2010.08.045
点击查看最新优质反应信息

文献信息

  • [EN] PYRIMIDINE JAK INHIBITORS FOR THE TREATMENT OF SKIN DISEASES<br/>[FR] INHIBITEURS DE JAK À BASE DE PYRIMIDINE POUR LE TRAITEMENT DE MALADIES DE LA PEAU
    申请人:THERAVANCE BIOPHARMA R&D IP LLC
    公开号:WO2020219640A1
    公开(公告)日:2020-10-29
    The invention provides compounds of formula (I): or pharmaceutically-acceptable salts thereof, that are inhibitors of Janus kinases. The invention also provides pharmaceutical compositions comprising such compounds, and methods of using such compounds to treat inflammatory and autoimmune skin diseases.
    该发明提供了式(I)的化合物或其药用可接受盐,这些化合物是Janus激酶的抑制剂。该发明还提供了包含这些化合物的药物组合物,以及使用这些化合物治疗炎症性和自身免疫性皮肤疾病的方法。
  • IRAK DEGRADERS AND USES THEREOF
    申请人:Kymera Therapeutics, Inc.
    公开号:US20190192668A1
    公开(公告)日:2019-06-27
    The present invention provides compounds, compositions thereof, and methods of using the same.
    本发明提供了化合物、其组合物以及使用这些化合物的方法。
  • [EN] ISOTOPE ENHANCED AMBROXOL FOR LONG LASTING AUTOPHAGY INDUCTION<br/>[FR] AMBROXOL À ISOTOPE AMÉLIORÉ POUR INDUCTION D'AUTOPHAGIE DURABLE
    申请人:STC UNM
    公开号:WO2018148113A1
    公开(公告)日:2018-08-16
    The present invention is directed to 13C and/or 2H isotope enhanced ambroxol ("isotope enhanced ambroxol") and its use in the treatment of autophagy infections, especially mycobacterial and other infections, disease states and/or conditions of the lung, such as tuberculosis, especially including drug resistant and multiple drag resistant tuberculosis. Pharmaceutical compositions comprising isotope enhanced amhroxol, alone or in combination with an additional bioactive agent, especially rifamycin antibiotics, including an additional autophagy modulator (an agent which is active to promote or inhibit autophagy), thus being useful against, an autophagy mediated disease state and/or condition), especially an antophagy mediated disease state and/or condition which occurs in the lungs, for example, a Mycobacterium infection. Chronic Obstructive Pulmonary Disease (COPD), asthma, pulmonary fibrosis, cystic fibrosis, Sjogren's disease and lung cancer (small cell and non-small cell lung cancer, among other disease states and/or conditions, especially of the lung. Methods of treating autophagy disease states and/or conditions, especially including autophagy disease states or conditions which occur principally in the lungs of a patient represent a further embodiment of the present invention. An additional embodiment includes methods of synthesizing compounds according to the present invention as otherwise disclosed herein.
    本发明涉及13C和/或2H同位素增强的氨溴索(“同位素增强的氨溴索”)及其在治疗自噬感染,特别是结核分枝杆菌和其他感染、疾病状态和/或肺部疾病条件中的用途,如肺结核,特别是包括耐药和多重耐药结核病。包括同位素增强的氨溴索的药物组合物,单独或与额外的生物活性剂(特别是利福霉素类抗生素,包括额外的自噬调节剂(一种能够促进或抑制自噬的剂),因此对抗自噬介导的疾病状态和/或条件有用),特别是在肺部发生的自噬介导的疾病状态和/或条件,例如分枝杆菌感染。慢性阻塞性肺病(COPD)、哮喘、肺纤维化、囊性纤维化、干燥综合征和肺癌(小细胞和非小细胞肺癌等其他肺部疾病状态和/或条件,特别是肺部疾病状态和/或条件。治疗自噬疾病状态和/或条件的方法,特别包括治疗主要发生在患者肺部的自噬疾病状态或条件的方法,代表本发明的另一实施例。另一实施例包括根据本发明在此披露的其他方法合成化合物的方法。
  • [EN] LYMPHATIC SYSTEM-DIRECTING LIPID PRODRUGS<br/>[FR] PROMÉDICAMENTS LIPIDIQUES ORIENTANT VERS LE SYSTÈME LYMPHATIQUE
    申请人:ARIYA THERAPEUTICS INC
    公开号:WO2019046491A1
    公开(公告)日:2019-03-07
    The present invention provides lymphatic system-directing lipid prodrugs, pharmaceutical compositions thereof, methods of producing such prodrugs and compositions, as well as methods of improving the bioavailability or other properties of a therapeutic agent that comprises part of the lipid prodrug. The present invention also provides methods of treating a disease, disorder, or condition such as those disclosed herein, comprising administering to a patient in need thereof a provided lipid prodrug or a pharmaceutical composition thereof.
    本发明提供了淋巴系统定向脂质前药,其制药组合物,制备这种前药和组合物的方法,以及改善作为脂质前药一部分的治疗剂的生物利用度或其他性质的方法。本发明还提供了治疗疾病、紊乱或症状的方法,包括向需要的患者施用所提供的脂质前药或其制药组合物。
  • [EN] IRAK DEGRADERS AND USES THEREOF<br/>[FR] AGENTS DE DÉGRADATION D'IRAK ET LEURS UTILISATIONS
    申请人:KYMERA THERAPEUTICS INC
    公开号:WO2020264499A1
    公开(公告)日:2020-12-30
    The present invention provides compounds, compositions thereof, and methods of using the same. The compounds include an IRAK binding moiety capable of binding to IRAK4 and a degradation inducing moiety (DIM). The DIM could be DTM a ligase binding moiety (LBM) or lysine mimetic. The compounds could be useful as IRAK protein kinase inhibitors and applied to IRAK mediated disorders.
    本发明提供了化合物、其组合物以及使用这些化合物的方法。这些化合物包括能够结合到IRAK4的IRAK结合基团和诱导降解的基团(DIM)。DIM可以是DTM、一个连接酶结合基团(LBM)或赖氨酸类似物。这些化合物可以作为IRAK蛋白激酶抑制剂,并应用于IRAK介导的疾病。
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫 龙胆紫 齐达帕胺 齐诺康唑 齐洛呋胺 齐墩果-12-烯[2,3-c][1,2,5]恶二唑-28-酸苯甲酯 齐培丙醇 齐咪苯 齐仑太尔 黑染料 黄酮,5-氨基-6-羟基-(5CI) 黄酮,6-氨基-3-羟基-(6CI) 黄蜡,合成物 黄草灵钾盐