Synthesis, Anti-HIV Activity, and Metabolic Stability of New Alkenyldiarylmethane HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors
摘要:
Non-nucleoside inhibitors of HIV-1 reverse transcriptase (NNRTIs) are part of the combination therapy currently used to treat HIV infection. Based on analogy with known HIV-1 NNRT inhibitors, 18 novel alkenyldiarylmethanes (ADAMs) containing 5-chloro-2-methoxyphenyl, 3-eyanophenyl, or 3-fluoro-5-trifluoromethylphenyl groups were synthesized and evaluated as HIV inhibitors. Their stabilities in rat plasma have also been investigated. Although introducing 5-chloro-2-methoxyphenyl or 3-fluoro-5-trifluoromethylphenyl groups into alkenyldiarylmethanes does not maintain the antiviral potency, the structural modification of alkenyldiarylmethanes with a 3-cyanophenyl substituent can be made without a large decrease in activity. The oxazolidinonyl group was introduced into the alkenyldiarylmethane framework and found to confer enhanced metabolic stability in rat plasma.
Replacement of the Metabolically Labile Methyl Esters in the Alkenyldiarylmethane Series of Non-Nucleoside Reverse Transcriptase Inhibitors with Isoxazolone, Isoxazole, Oxazolone, or Cyano Substituents
作者:Bo-Liang Deng、Tracy L. Hartman、Robert W. Buckheit,、Christophe Pannecouque、Erik De Clercq、Mark Cushman
DOI:10.1021/jm060449o
日期:2006.8.1
The alkenyldiarylmethanes (ADAMs) are a unique class of non-nucleoside reverse transcriptase inhibitors that have potential value in the treatment of HIV/AIDS. However, the potential usefulness of the ADAMs is limited by the presence of metabolically labile methyl ester moieties. A series of novel ADAMs were therefore designed and synthesized in order to replace the metabolically labile methyl ester moieties of the existing ADAM lead compounds with hydrolytically stable, fused isoxazolone, isoxazole, oxazolone, or cyano substituents on the aromatic rings. The methyl ester and methoxy substituents on both of the aromatic rings in the parent compound 1 were successfully replaced with metabolically stable moieties with retention of anti-HIV activity and a general decrease in cytotoxicity.
Alkenyldiarylmethanes, Fused Analogs And Syntheses Thereof
申请人:Cushman Mark S.
公开号:US20080300288A1
公开(公告)日:2008-12-04
Non-nucleoside inhibitors of HIV-1 reverse transcriptase are described. Such inhibitors may be used as part of a combination therapy to treat HIV infection. Compounds described herein exhibit antiviral potency. In addition, compounds described herein exhibit metabolic stability. Also described herein are processes for preparing Non-nucleoside inhibitors of HIV-1 reverse transcriptase.
Synthesis, Anti-HIV Activity, and Metabolic Stability of New Alkenyldiarylmethane HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors
作者:Bo-Liang Deng、Tracy L. Hartman、Robert W. Buckheit,、Christophe Pannecouque、Erik De Clercq、Phillip E. Fanwick、Mark Cushman
DOI:10.1021/jm050452s
日期:2005.9.1
Non-nucleoside inhibitors of HIV-1 reverse transcriptase (NNRTIs) are part of the combination therapy currently used to treat HIV infection. Based on analogy with known HIV-1 NNRT inhibitors, 18 novel alkenyldiarylmethanes (ADAMs) containing 5-chloro-2-methoxyphenyl, 3-eyanophenyl, or 3-fluoro-5-trifluoromethylphenyl groups were synthesized and evaluated as HIV inhibitors. Their stabilities in rat plasma have also been investigated. Although introducing 5-chloro-2-methoxyphenyl or 3-fluoro-5-trifluoromethylphenyl groups into alkenyldiarylmethanes does not maintain the antiviral potency, the structural modification of alkenyldiarylmethanes with a 3-cyanophenyl substituent can be made without a large decrease in activity. The oxazolidinonyl group was introduced into the alkenyldiarylmethane framework and found to confer enhanced metabolic stability in rat plasma.