Synthesis, Structure, and Neuroprotective Properties of Novel Imidazolyl Nitrones
摘要:
A new series of imidazolyl nitrones spin traps has been synthesized and evaluated pharmacologically. The salient structural feature of these molecules is the presence of an imidazole moiety substituted by aromatic or heteroaromatic cycles. This connectivity imparts to the nitrone superior neuroprotective properties in vivo and in parallel reduced side effects and toxicity. Thus compound 6a (a 2-phenylimidazolyl nitrone) administered intraperitoneally protects (80%) mice from lethality induced by an intracerebroventricular administration of tert-butyl hydroperoxide (t-BHP) an oxidant capable of inducing neurodegenerative processes. Administration of the archetypal nitrone phenyl-tert-butyl nitrone (PBN) at an equimolar dose also affords some protection (60%) in this test. However, this activity is accompanied by hypothermia, whereas no such effect is apparent for 6a. Moreover, previously prepared nonsubstituted or alkyl-substituted imidazolyl nitrones were shown to be extremely toxic to rats in contrast to the compounds prepared in this study. The observed activities in vivo correlate well with the calculated partition coefficients (ClogP) and HOMO energy level.
Synthesis, Antiviral Potency, in Vitro ADMET, and X-ray Structure of Potent CD4 Mimics as Entry Inhibitors That Target the Phe43 Cavity of HIV-1 gp120
作者:Francesca Curreli、Young Do Kwon、Dmitry S. Belov、Ranjith R. Ramesh、Alexander V. Kurkin、Andrea Altieri、Peter D. Kwong、Asim K. Debnath
DOI:10.1021/acs.jmedchem.7b00179
日期:2017.4.13
entry antagonist, NBD-11021, we present in this study the rational design and synthesis of 60 new analogues and determination of their antiviral activity in a single-cycle and a multicycle infection assay to derive a comprehensive structure–activity relationship (SAR). Two of these compounds, NBD-14088 and NBD-14107, showed significant improvement in antiviral activity compared to the lead entry antagonist
A new series of imidazolyl nitrones spin traps has been synthesized and evaluated pharmacologically. The salient structural feature of these molecules is the presence of an imidazole moiety substituted by aromatic or heteroaromatic cycles. This connectivity imparts to the nitrone superior neuroprotective properties in vivo and in parallel reduced side effects and toxicity. Thus compound 6a (a 2-phenylimidazolyl nitrone) administered intraperitoneally protects (80%) mice from lethality induced by an intracerebroventricular administration of tert-butyl hydroperoxide (t-BHP) an oxidant capable of inducing neurodegenerative processes. Administration of the archetypal nitrone phenyl-tert-butyl nitrone (PBN) at an equimolar dose also affords some protection (60%) in this test. However, this activity is accompanied by hypothermia, whereas no such effect is apparent for 6a. Moreover, previously prepared nonsubstituted or alkyl-substituted imidazolyl nitrones were shown to be extremely toxic to rats in contrast to the compounds prepared in this study. The observed activities in vivo correlate well with the calculated partition coefficients (ClogP) and HOMO energy level.
Transformation of Anionically Activated Trifluoromethyl Groups to Heterocycles under Mild Aqueous Conditions
作者:Jennifer X. Qiao、Tammy C. Wang、Carol Hu、Jianqing Li、Ruth R. Wexler、Patrick Y. S. Lam
DOI:10.1021/ol200326u
日期:2011.4.1
The (hetero)aromatic trifluoromethyl group is present in many biologically active molecules and is generally considered to be chemically stable. In this paper, a convenient one-step synthesis of C-C linked aryl-heterocycles or heteroaryl-heterocycles In good to excellent yields via the reaction of anionically activated trifluoromethyl groups with amino nucleophiles containing a second NH, OH, or SH nucleophile in 1 N sodium hydroxide is reported. The method has high functional group tolerability and is potentially useful in parallel synthesis.
Discovery of novel 2-aryl-4-bis-amide imidazoles (ABAI) as anti-inflammatory agents for the treatment of inflammatory bowel diseases (IBD)