Synthesis and Characterization of BODIPY-α-Tocopherol: A Fluorescent Form of Vitamin E
摘要:
Fluorescent nitrobenzoxadiazole analogues of alpha-tocopherol (NBD-alpha-Tocs;lambda(ex) = 468 nm, lambda(em) = 527 nm) have been made previously to aid study of the intracellular location and transfer of vitamin E. However, these analogues are susceptible to photobleaching while under illumination for confocal microscopy as well as in in vitro FRET transfer assays. Here we report the synthesis of three fluorescent analogues of alpha-tocopherol incorporating the more robust dipyrrometheneboron difluoride (BODIPY) fluorophore. A BODIPY-linked chromanol should have no intervening polar functional groups that might interfere with binding to the hydrophobic binding site of the tocopherol transfer protein (alpha-TTP). A key step in bringing the two ring systems together was a metathesis reaction of vinyl chromanol and an alkenyl BODIPY. An o-tolyl containing second generation Grubbs catalyst was identified as the best catalyst for effecting the metathesis without detectable alkene isomerization, which when it occurred produced a mixture of chain lengths in the alkyl linker. C8-BODIPY-alpha-Toc 10c (lambda(ex) = 507 nm, lambda(em) = 511 nm, epsilon(507) = 83,000 M-1 cm(-1)) having an eight-carbon chain between the chromanol and fluorophore, had the highest affinity for alpha-TTP (K-d = 94 +/- 3 nM) and bound specifically as it could not be displaced with cholesterol.
Acyl radicals are invaluable intermediates in organic synthesis, however their generation remains challenging. Herein, we present an unprecedented light‐driven, cobalt‐catalysed method for the generation of acyl radicals from readily available 2‐S‐pyridyl thioesters. The synthetic potential of this methodology was demonstrated in the Giese‐type acylation of activated olefins in the presence of heptamethyl
Synthesis and Characterization of BODIPY-α-Tocopherol: A Fluorescent Form of Vitamin E
作者:Ryan West、Candace Panagabko、Jeffrey Atkinson
DOI:10.1021/jo100095n
日期:2010.5.7
Fluorescent nitrobenzoxadiazole analogues of alpha-tocopherol (NBD-alpha-Tocs;lambda(ex) = 468 nm, lambda(em) = 527 nm) have been made previously to aid study of the intracellular location and transfer of vitamin E. However, these analogues are susceptible to photobleaching while under illumination for confocal microscopy as well as in in vitro FRET transfer assays. Here we report the synthesis of three fluorescent analogues of alpha-tocopherol incorporating the more robust dipyrrometheneboron difluoride (BODIPY) fluorophore. A BODIPY-linked chromanol should have no intervening polar functional groups that might interfere with binding to the hydrophobic binding site of the tocopherol transfer protein (alpha-TTP). A key step in bringing the two ring systems together was a metathesis reaction of vinyl chromanol and an alkenyl BODIPY. An o-tolyl containing second generation Grubbs catalyst was identified as the best catalyst for effecting the metathesis without detectable alkene isomerization, which when it occurred produced a mixture of chain lengths in the alkyl linker. C8-BODIPY-alpha-Toc 10c (lambda(ex) = 507 nm, lambda(em) = 511 nm, epsilon(507) = 83,000 M-1 cm(-1)) having an eight-carbon chain between the chromanol and fluorophore, had the highest affinity for alpha-TTP (K-d = 94 +/- 3 nM) and bound specifically as it could not be displaced with cholesterol.