/SRP:/ Immediate first aid: Ensure that adequate decontamination has been carried out. If patient is not breathing, start artificial respiration, preferably with a demand valve resuscitator, bag-valve-mask device, or pocket mask, as trained. Perform CPR if necessary. Immediately flush contaminated eyes with gently flowing water. Do not induce vomiting. If vomiting occurs, lean patient forward or place on the left side (head-down position, if possible) to maintain an open airway and prevent aspiration. Keep patient quiet and maintain normal body temperature. Obtain medical attention. /Poisons A and B/
/SRP:/ Basic treatment: Establish a patent airway (oropharyngeal or nasopharyngeal airway, if needed). Suction if necessary. Watch for signs of respiratory insufficiency and assist ventilations if needed. Administer oxygen by nonrebreather mask at 10 to 15 L/min. Monitor for pulmonary edema and treat if necessary ... . Monitor for shock and treat if necessary ... . Anticipate seizures and treat if necessary ... . For eye contamination, flush eyes immediately with water. Irrigate each eye continuously with 0.9% saline (NS) during transport ... . Do not use emetics. For ingestion, rinse mouth and administer 5 mL/kg up to 200 mL of water for dilution if the patient can swallow, has a strong gag reflex, and does not drool ... . Cover skin burns with dry sterile dressings after decontamination ... . /Poisons A and B/
/SRP:/ Advanced treatment: Consider orotracheal or nasotracheal intubation for airway control in the patient who is unconscious, has severe pulmonary edema, or is in severe respiratory distress. Positive-pressure ventilation techniques with a bag valve mask device may be beneficial. Consider drug therapy for pulmonary edema ... . Consider administering a beta agonist such as albuterol for severe bronchospasm ... . Monitor cardiac rhythm and treat arrhythmias as necessary ... . Start IV administration of D5W /SRP: "To keep open", minimal flow rate/. Use 0.9% saline (NS) or lactated Ringer's if signs of hypovolemia are present. For hypotension with signs of hypovolemia, administer fluid cautiously. Watch for signs of fluid overload ... . Treat seizures with diazepam or lorazepam ... . Use proparacaine hydrochloride to assist eye irrigation ... . /Poisons A and B/
/GENOTOXICITY/ Bromophenol blue and tetrabromophenol blue are two triphenylmethane dyes. ... Safety concerns on these two dyes of interest have been raised. Consequently, a battery of genetic toxicology assays, including the Ames Salmonella/microsome assay, L5178Y TK+/- mouse lymphoma assay, mouse micronucleus test and mitotic recombination assay with yeast Saccharomyces cerevisiae strain D5, has been performed on each of the two dyes. The results of the evaluations indicate that both bromophenol blue and tetrabromophenol blue were not active and can be considered non-genotoxic for the three genetic endpoints assessed (gene mutation, chromosome aberrations and primary DNA damage). Genetic activities in some structurally related compounds of these dyes have been reported but may be attributed to the presence of mutagenic impurities rather than the compound itself.
Concentrations of bromophenol blue (I) in plasma, urine, and bile were determined spectrophotometrically after intravenous bolus injections and infusions in rats. The plasma concentrations were found to decrease monoexponentially after all doses except the highest, where the decrease was biexponential. Although the disposition kinetics of I were apparently first-order at all doses, the half-life increased with increasing dose. The area under the plasma concentration-time curve (AUC0-infinity) increased disproportionately with increasing dose. The binding of I to rat plasma proteins, as determined by equilibrium dialysis, showed that the fraction bound (96%) remained constant in the concentration range of 10-300 micrograms/ml. Plasma concentrations were determined at time zero after intravenous administration and after a second dose administered 20 min later when plasma concentrations from the first dose were minimal. The apparent first-order elimination rate constant for the plasma concentration decline following the second dose was significantly less than after the first dose, indicating that the residual dye in the liver altered the elimination of I after the second dose. The fraction of the dose in the liver decreased with increasing dose, indicating a saturable uptake process. The biliary excretion profile reflected the uptake saturation that occurred in the liver and demonstrated that the biliary excretion of I depended on the amount present in the liver. When liver damage was induced by exposure to carbon tetrachloride, dye concentrations in the plasma, liver, and kidney increased markedly.
Internal resin capture — A self purification method for the synthesis of C-terminally modified peptides
摘要:
A synthetic strategy which allows for the general modification of peptides at the C-terminus has long been the goal of the synthetic chemist. We report here the full synthetic details of our inversion and modification methodology demonstrating the method with the synthesis of peptide amides, alcohols, nitriles and a range of other modified peptides. (C) 1999 Elsevier Science Ltd. All rights reserved.
Modulators (inhibitors/ activators) of histone acetyltransferases
申请人:Kundu Kumar Tapas
公开号:US20060167107A1
公开(公告)日:2006-07-27
Disclosed are compounds of the formulae:
and method of using the compounds to treat cancer, AIDS, HIV infection, and asthma.
揭示了以下式的化合物:
以及使用这些化合物治疗癌症、艾滋病、HIV感染和哮喘的方法。
AKT INACTIVATION BY TOCOPHERYL DERIVATIVES
申请人:Chen Ching-Shih
公开号:US20140031388A1
公开(公告)日:2014-01-30
Anticancer compounds according to formula I are described herein.
wherein R
1
, R
2
, R
3
and R
4
are selected from H, CH
3
, OH, SH, OCH
3
, NHR′, halogen, CF
3
, N-linked pyrrolidine, and SO
2
NHR′, or any combination thereof; R
5
is an alkyl, alkenyl, or alkaryl group including from 4 to 11 carbons, X is selected from CH
2
, CHOH, C═O, S═O, O═S═O, and an oxetane ring, Y is selected from CH
2
, O, and NH, and R′ is a H, aryl, or a lower alkyl group, or pharmaceutically acceptable salts thereof. The compounds have been shown to facilitate site-specific dephosphorylation of Akt at Ser-473, thereby inactivating Akt and decreasing dysregulation of Akt signaling that can occur in cancer cells.
SYNTHESIS AND USE OF DUAL TYROSYL-DNA PHOSPHODIESTERASE I (TDP1)- TOPOISOMERASE I (TOP1) INHIBITORS
申请人:PURDUE RESEARCH FOUNDATION
公开号:US20130345252A1
公开(公告)日:2013-12-26
The invention described herein pertains to the synthesis and use of certain N-substituted indenoisoquinoline compounds which inhibit the activity Tyrosyl-DNA Phosphodiesterase I (Tdp1) or Topoisomerase I (Top1) or both, or otherwise demonstrate anticancer activity. Also disclosed are novel N-substituted indenoisoquinoline compounds and pharmaceutical compositions comprising the novel N-substituted indenoisoquinoline compounds.
[EN] NOVEL SMALL MOLECULE INHIBITORS OF TEAD TRANSCRIPTION FACTORS<br/>[FR] NOUVEAUX INHIBITEURS À PETITES MOLÉCULES DE FACTEURS DE TRANSCRIPTION TEAD
申请人:MASSACHUSETTS GEN HOSPITAL
公开号:WO2020190774A1
公开(公告)日:2020-09-24
The present disclosure compounds, as well as their compositions and methods of use. The compounds inhibit the activity of the TEAD transcription factor, and are useful in the treatment of diseases related to the activity of TEAD transcription factor including, e.g., cancer and other diseases.
The present invention provides a kind of benzopyrone compounds having a structure of formula (I) and the pharmaceutically acceptable salts or prodrugs thereof, and the pharmaceutical compositions containing such compounds, which can be used to regulate the novel estrogen receptor ER-a36, and prevent and/or treat the related diseases mediated by the ER-a36 receptor, such as cancers, etc.