The 1,4-anhydro-5-deoxy-6-thio-D-ribo-hexofuranitol (1) was prepared from 1,2-O-isopropylidene-α-D-glucose in 10 steps. In a key step treatment of the 1,2-O-isopropylidenehexofuranose derivative with BF3/Et3SiH effected deacetonization and reductive deoxygenation at carbon 1. Pulse radiolysis experiments with 6-thiohexofuranitol 1 and its disulfide derivative demonstrated formation of the ribosyl-based carbon-centered radical upon generation of 6-thiyl radical in basic medium. The proposed [1,5]-hydrogen shift abstraction with generation of the C3 radical mimics the initial substrate reaction of RNRs. The reversible H-atom transfer has been quantified and was correlated with the computed rate constants for the internal H atom abstraction from C1, C2, C3 and C4 by the thiyl radical. The energy barrier for the H3 and H4 abstractions were calculated to be most favorable with the corresponding barriers of 11.1 and 11.2 kcal/mol, respectively.