Synthesis of Perfluoroalkyl End-Functionalized Poly(3-hexylthiophene) and the Effect of Fluorinated End Groups on Solar Cell Performance
摘要:
A series of well-defined perfluoroalkyl end-functionalized poly(3-hexylthiophenes) (P3HT) were synthesized by Stifle coupling of stannylated 2-perfluoralkylthiophene with the bromine end of P3HT. The length of the perfluoroalkyl end group was varied from -C4F13 to -C8F17. These polymers were fully characterized and tested in bulk heterojunction solar cells with phenyl-C-61-butyric acid methyl ester (PCBM) as the acceptor. Performance of the solar cells was highest for the unmodified P3HT and decreased as the length of the perfluoroalkyl end increased. The most affected device parameters were the short-circuit current density (J(sc)) and series resistance, pointing to lower charge carrier mobility and poor morphology as the cause for the lower performance. While the morphology of blends did not significantly change with perfluoroalkyl end modification, analysis of blended films by energy-filtered transmission electron microscopy (EF-TEM) revealed wider P3HT domains, consistent with the perfluorinated end groups segregating to the edge or exterior of P3HT domains, causing two domains to join. This study demonstrates that the perfluoroalkyl end group can be detrimental to polymer solar cell device performance, and further work toward understanding the interface between the donor and acceptor phases is required to fully understand this effect.
Synthesis of Perfluoroalkyl End-Functionalized Poly(3-hexylthiophene) and the Effect of Fluorinated End Groups on Solar Cell Performance
摘要:
A series of well-defined perfluoroalkyl end-functionalized poly(3-hexylthiophenes) (P3HT) were synthesized by Stifle coupling of stannylated 2-perfluoralkylthiophene with the bromine end of P3HT. The length of the perfluoroalkyl end group was varied from -C4F13 to -C8F17. These polymers were fully characterized and tested in bulk heterojunction solar cells with phenyl-C-61-butyric acid methyl ester (PCBM) as the acceptor. Performance of the solar cells was highest for the unmodified P3HT and decreased as the length of the perfluoroalkyl end increased. The most affected device parameters were the short-circuit current density (J(sc)) and series resistance, pointing to lower charge carrier mobility and poor morphology as the cause for the lower performance. While the morphology of blends did not significantly change with perfluoroalkyl end modification, analysis of blended films by energy-filtered transmission electron microscopy (EF-TEM) revealed wider P3HT domains, consistent with the perfluorinated end groups segregating to the edge or exterior of P3HT domains, causing two domains to join. This study demonstrates that the perfluoroalkyl end group can be detrimental to polymer solar cell device performance, and further work toward understanding the interface between the donor and acceptor phases is required to fully understand this effect.
Copper-Catalyzed Oxidative Perfluoroalkylation of Aryl Boronic Acids Using Perfluoroalkylzinc Reagents
作者:Xifei Bao、Lihua Liu、Junlan Li、Shilu Fan
DOI:10.1021/acs.joc.7b02557
日期:2018.1.5
An efficient and synthetically convenient method for copper-catalyzed cross-coupling of aryl boronic acids with perfluoroalkyl zinc reagents has been described. The reaction proceeds under mild reaction conditions with a high efficiency and broad substrate scope and provides a general access to perfluoroalkylated arenes, which are of interest in life and materials science.
New Methods of Free-Radical Perfluoroalkylation of Aromatics and Alkenes. Absolute Rate Constants and Partial Rate Factors for the Homolytic Aromatic Substitution by <i>n</i>-Perfluorobutyl Radical
n-C(4)F(9)I has been utilized as source of C(4)F(9)(*) radical through iodine abstraction by phenyl or methyl radical. The reaction with alkenes, carried out in the presence of catalytic amount of Cu(OAc)(2), leads to substitution by a mechanism substantially identical to the aromatic substitution and not to the usual chain addition of perfluoroalkyl group and iodine atom to the double bond. This has
Copper-mediated perfluoroalkylation of halogenothiophenes
作者:J. Leroy、M. Rubinstein、C. Wakselman
DOI:10.1016/s0022-1139(00)81309-3
日期:1985.3
LEROY, J.;RUBINSTEIN, M.;WAKSELMAN, C., J. FLUOR. CHEM., 1985, 27, N 3, 291-298
作者:LEROY, J.、RUBINSTEIN, M.、WAKSELMAN, C.
DOI:——
日期:——
Synthesis of Perfluoroalkyl End-Functionalized Poly(3-hexylthiophene) and the Effect of Fluorinated End Groups on Solar Cell Performance
作者:Zhenghao Mao、Kiarash Vakhshouri、Cherno Jaye、Daniel A. Fischer、Roshan Fernando、Dean M. DeLongchamp、Enrique D. Gomez、Geneviève Sauvé
DOI:10.1021/ma301397p
日期:2013.1.8
A series of well-defined perfluoroalkyl end-functionalized poly(3-hexylthiophenes) (P3HT) were synthesized by Stifle coupling of stannylated 2-perfluoralkylthiophene with the bromine end of P3HT. The length of the perfluoroalkyl end group was varied from -C4F13 to -C8F17. These polymers were fully characterized and tested in bulk heterojunction solar cells with phenyl-C-61-butyric acid methyl ester (PCBM) as the acceptor. Performance of the solar cells was highest for the unmodified P3HT and decreased as the length of the perfluoroalkyl end increased. The most affected device parameters were the short-circuit current density (J(sc)) and series resistance, pointing to lower charge carrier mobility and poor morphology as the cause for the lower performance. While the morphology of blends did not significantly change with perfluoroalkyl end modification, analysis of blended films by energy-filtered transmission electron microscopy (EF-TEM) revealed wider P3HT domains, consistent with the perfluorinated end groups segregating to the edge or exterior of P3HT domains, causing two domains to join. This study demonstrates that the perfluoroalkyl end group can be detrimental to polymer solar cell device performance, and further work toward understanding the interface between the donor and acceptor phases is required to fully understand this effect.