Isomeric Carbazole-Based Hole-Transporting Materials: Role of the Linkage Position on the Photovoltaic Performance of Perovskite Solar Cells
作者:Albertus Adrian Sutanto、Vellaichamy Joseph、Cansu Igci、Olga A. Syzgantseva、Maria A. Syzgantseva、Vygintas Jankauskas、Kasparas Rakstys、Valentin I. E. Queloz、Ping-Yu Huang、Jen-Shyang Ni、Sachin Kinge、Abdullah M. Asiri、Ming-Chou Chen、Mohammad Khaja Nazeeruddin
DOI:10.1021/acs.chemmater.1c00335
日期:2021.5.11
the carbazole core. Perovskite solar cells fabricated with Car[2,3] as the hole transporting material (HTM) displayed the highest power conversion efficiency (PCE) of 19.23%. It can be attributed to the suitable energy alignment of the highest occupied molecular orbital (HOMO) of HTM with the adjacent perovskite valence band energy level, which results in efficient hole transport. Furthermore, the molecular
已经设计并用简便的合成方法合成了用三芳基胺修饰的咔唑的两种结构异构体。通过结合实验和模拟方法,广泛研究了三芳基胺取代对咔唑的异构体结构键对光学,热,电化学和光伏性质的影响。与Car [1,3]相比,Car [2,3]的最大吸收出现红移,表明前者沿咔唑的2,7-位呈线性共轭。这些化合物的高热分解温度(> 420°C)可以归因于咔唑核的刚性结构。用汽车制造的钙钛矿太阳能电池[2,3]空穴传输材料(HTM)的功率转换效率(PCE)最高,为19.23%。这可以归因于HTM的最高占据分子轨道(HOMO)与相邻的钙钛矿价带能级的适当能量对准,这导致有效的空穴传输。此外,分子动力学模拟表明,在Car [2,3]的2,3,6,7位置上的三苯胺取代会导致钙钛矿表面顶部的分子排列更加平坦,从而促进了高效的空穴提取。本质上,当Car [1,3]和Car [2,3] 应用于钙钛矿型太阳能电池中,它们在连续照射1000小时后保留了>