Iron-Catalyzed Stereospecific Olefin Synthesis by Direct Coupling of Alcohols and Alkenes with Alcohols
摘要:
An efficient Fe(III)-catalyzed direct coupling of alkenes with alcohols and cross-coupling of alcohols with alcohols to give the corresponding substituted (E)-alkenes stereospecifically is demonstrated. Additionally, this reaction could be scaled up. The kinetic isotope effect (KIE) experiments indicated a typical secondary isotope effect in this process. Although benzylic alcohols were effective substrates, mild conditions, atom efficiency, environmental soundness, and stereospecificity are features that make this procedure very attractive.
Metal-Free and Recyclable Route to Synthesize Polysubstituted Olefins<i>via</i>CC Bond Construction from Direct Dehydrative Coupling of Alcohols or Alkenes with Alcohols Catalyzed by Sulfonic Acid-Functionalized Ionic Liquids
AbstractA direct synthesis of polysubstituted olefins via construction of CC bonds, which involves the direct dehydrative coupling of alcohols or alkenes with alcohols, was realized using a series of alkanesulfonic acid group‐functionalized ionic liquids (SO3H‐functionlization ILs) without additives. The metal‐free and recyclable catalyst system avoided the disposal and neutralization of acidic catalysts after reaction and tolerated a broad range of substrates, including benzylic, allyl, propargylic, aliphatic and aromatic or aliphatic olefins. Additionally, the catalytic system was suitable for a gram‐scale preparation. Preliminary mechanistic studies indicated that the CH bond cleavage in this reaction might be involved in the rate‐determining step.magnified image
Iron-Catalyzed Stereospecific Olefin Synthesis by Direct Coupling of Alcohols and Alkenes with Alcohols
An efficient Fe(III)-catalyzed direct coupling of alkenes with alcohols and cross-coupling of alcohols with alcohols to give the corresponding substituted (E)-alkenes stereospecifically is demonstrated. Additionally, this reaction could be scaled up. The kinetic isotope effect (KIE) experiments indicated a typical secondary isotope effect in this process. Although benzylic alcohols were effective substrates, mild conditions, atom efficiency, environmental soundness, and stereospecificity are features that make this procedure very attractive.