Synthesis, Pharmacological Characterization, and Docking Analysis of a Novel Family of Diarylisoxazoles as Highly Selective Cyclooxygenase-1 (COX-1) Inhibitors
摘要:
3-(5-Chlorofuran-2-yl)-5-methyl-4-phenylisoxazole (P6), a known selective cyclooxygenase-1 (COX-1) inhibitor, was used to design a new series of 3,4-diarylisoxazoles in order to improve its biochemical COX-1 selectivity and antiplatelet efficacy. Structure activity relationships were studied using human whole blood assays for COX-1 and COX-2 inhibition in vitro, and results showed that the simultaneous presence of S-methyl (or -CF3), 4-phenyl, and 5-chloro(-bromo or -methyl)furan-2-yl groups on the isoxazole core was essential for their selectivity toward COX-1. 3g, 3s, 3d were potent and selective COX-1 inhibitors that affected platelet aggregation in vitro through the inhibition of COX-1-dependent thromboxane (TX) A(2). Moreover, we characterized their kinetics of COX-1 inhibition. 3g, 3s, and 3d were more potent inhibitors of platelet COX-1 and aggregation than P6 (named 6) for their tighter binding to the enzyme. The pharmacological results were supported by docking simulations. The oral administration of 3d to mice translated into preferential inhibition of platelet-derived TXA(2) over protective vascular-derived prostac-yclin (PGI(2)).
Functionalized diarylisoxazoles inhibitors of ciclooxygenase
申请人:Scilimati Antonio
公开号:US20090181970A1
公开(公告)日:2009-07-16
The present invention refers to isoxazole derivatives, in particular diarylisoxazole derivatives inhibitors of cyclooxygenase (COX), in particular cyclooxygenase-1 (COX-1), to their pharmaceutical compositions, the process for their preparation and their use for the chemoprevention and treatment of inflammatory syndromes and in the prevention and treatment of carcinomas, in particular intestinal, ovarian and cutaneous carcinomas, in the treatment of pain syndromes, in particular after surgery, and in the cardiovascular field as antithrombotics/vasoprotectives/cardioprotectives.
Synthesis, Pharmacological Characterization, and Docking Analysis of a Novel Family of Diarylisoxazoles as Highly Selective Cyclooxygenase-1 (COX-1) Inhibitors
3-(5-Chlorofuran-2-yl)-5-methyl-4-phenylisoxazole (P6), a known selective cyclooxygenase-1 (COX-1) inhibitor, was used to design a new series of 3,4-diarylisoxazoles in order to improve its biochemical COX-1 selectivity and antiplatelet efficacy. Structure activity relationships were studied using human whole blood assays for COX-1 and COX-2 inhibition in vitro, and results showed that the simultaneous presence of S-methyl (or -CF3), 4-phenyl, and 5-chloro(-bromo or -methyl)furan-2-yl groups on the isoxazole core was essential for their selectivity toward COX-1. 3g, 3s, 3d were potent and selective COX-1 inhibitors that affected platelet aggregation in vitro through the inhibition of COX-1-dependent thromboxane (TX) A(2). Moreover, we characterized their kinetics of COX-1 inhibition. 3g, 3s, and 3d were more potent inhibitors of platelet COX-1 and aggregation than P6 (named 6) for their tighter binding to the enzyme. The pharmacological results were supported by docking simulations. The oral administration of 3d to mice translated into preferential inhibition of platelet-derived TXA(2) over protective vascular-derived prostac-yclin (PGI(2)).