摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

methyl N-dihydrocinnamoyl-γ-aminocrotonate | 139200-34-3

中文名称
——
中文别名
——
英文名称
methyl N-dihydrocinnamoyl-γ-aminocrotonate
英文别名
methyl (E)-4-(3-phenylpropanoylamino)but-2-enoate
methyl N-dihydrocinnamoyl-γ-aminocrotonate化学式
CAS
139200-34-3
化学式
C14H17NO3
mdl
——
分子量
247.294
InChiKey
YBBSKBREZOYWRI-VMPITWQZSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    1.6
  • 重原子数:
    18
  • 可旋转键数:
    7
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.29
  • 拓扑面积:
    55.4
  • 氢给体数:
    1
  • 氢受体数:
    3

反应信息

  • 作为产物:
    描述:
    、 methyl γ-aminocrotonate trifluoroacetate 在 N-甲基吗啉 作用下, 以 四氢呋喃 为溶剂, 生成 methyl N-dihydrocinnamoyl-γ-aminocrotonate
    参考文献:
    名称:
    Structure-activity relationships for inhibition of papain by peptide Michael acceptors
    摘要:
    Two series of peptidyl Michael acceptors, N-Ac-L-Phe-NHCH2CH = CH-E with different electron withdrawing groups (E = CO2CH3, 1a; SO2CH3, 1b; CO2H, 1c; CN, 1d; CONH2, 1e; and C6H4-p-NO2, 1f) and R-NHCH2CH = CHCOOCH3 with different recognition and binding groups (R = N-Ac-D-Phe, 2a; N-Ac-L-Leu, 3a; N-Ac-L-Met, 4a; PhCH2CH2CO, 5a; PhCO, 6a), were synthesized and evaluated as inactivators against papain. It was found that the inhibition of papain by peptidyl Michael acceptors is a general phenomenon and that the intrinsic chemical reactivity of the E group in the Michael acceptors has a direct effect on the kinetics of the inactivation process as reflected in k2/K(i). At pH 6.2, the reactivity of papain toward the Michael acceptors is about 283 000-fold higher than the reactivity of the model thiol 3-mercaptopropionate. This large increase in reactivity is attributable to at least 2 factors; one is the low apparent pK(a) of Cys-25 of papain, and the other is the recruitment of catalytic power by specific enzyme-substrate interactions. The unexpectedly high reactivity of 1c (E = COOH) was rationalized by proposing a direct interaction of the acid group with His-159 in the active site of papain. The unexpected inactivity of 1f (E = C6H4-p-NO2) as a Michael acceptor and its very powerful competitive inhibition of papain were rationalized by molecular graphics which showed the nitrophenyl moiety rotated out of conjugation with the olefin and interacting instead with the hydrophobic S1' region of papain. A plot of log (k2/K(i)) for 1a-6a vs log (k(cat)/K(m)) for analogous R-Gly-p-NA substrates was linear (r = 0.98) with slope of 0.83, suggesting that binding energy from specific enzyme-ligand interactions can be used to drive the self-inactivation reaction to almost the same extent as it is used to drive catalysis.
    DOI:
    10.1021/jm00084a012
点击查看最新优质反应信息

文献信息

  • Structure-activity relationships for inhibition of papain by peptide Michael acceptors
    作者:Siming Liu、Robert P. Hanzlik
    DOI:10.1021/jm00084a012
    日期:1992.3
    Two series of peptidyl Michael acceptors, N-Ac-L-Phe-NHCH2CH = CH-E with different electron withdrawing groups (E = CO2CH3, 1a; SO2CH3, 1b; CO2H, 1c; CN, 1d; CONH2, 1e; and C6H4-p-NO2, 1f) and R-NHCH2CH = CHCOOCH3 with different recognition and binding groups (R = N-Ac-D-Phe, 2a; N-Ac-L-Leu, 3a; N-Ac-L-Met, 4a; PhCH2CH2CO, 5a; PhCO, 6a), were synthesized and evaluated as inactivators against papain. It was found that the inhibition of papain by peptidyl Michael acceptors is a general phenomenon and that the intrinsic chemical reactivity of the E group in the Michael acceptors has a direct effect on the kinetics of the inactivation process as reflected in k2/K(i). At pH 6.2, the reactivity of papain toward the Michael acceptors is about 283 000-fold higher than the reactivity of the model thiol 3-mercaptopropionate. This large increase in reactivity is attributable to at least 2 factors; one is the low apparent pK(a) of Cys-25 of papain, and the other is the recruitment of catalytic power by specific enzyme-substrate interactions. The unexpectedly high reactivity of 1c (E = COOH) was rationalized by proposing a direct interaction of the acid group with His-159 in the active site of papain. The unexpected inactivity of 1f (E = C6H4-p-NO2) as a Michael acceptor and its very powerful competitive inhibition of papain were rationalized by molecular graphics which showed the nitrophenyl moiety rotated out of conjugation with the olefin and interacting instead with the hydrophobic S1' region of papain. A plot of log (k2/K(i)) for 1a-6a vs log (k(cat)/K(m)) for analogous R-Gly-p-NA substrates was linear (r = 0.98) with slope of 0.83, suggesting that binding energy from specific enzyme-ligand interactions can be used to drive the self-inactivation reaction to almost the same extent as it is used to drive catalysis.
查看更多