Room Temperature Copper(II)-Catalyzed Oxidative Cyclization of Enamides to 2,5-Disubstituted Oxazoles via Vinylic C–H Functionalization
摘要:
A copper(11)-catalyzed oxidative cyclization of enamides to oxazoles via vinylic C-H bond functionalization at room temperature is described. Various 2,5-disubstituted oxazoles bearing aryl, vinyl, alkyl, and heteroaryl substituents could be synthesized in moderate to high yields. This reaction protocol is complementary to our previously reported iodine-mediated cyclization of enamides to afford 2,4,5-trisubstituted oxazoles.
BETA-AMINO PHOSPHONIC ACID DERIVATIVE AND PREPARATION METHOD THEREFOR
申请人:SOOCHOW UNIVERSITY
公开号:US20210130376A1
公开(公告)日:2021-05-06
A method for preparing a β-amino phosphonic acid derivative includes: dissolving N-(arylvinyl)benzamide, dialkyl phosphite, manganese acetate, and potassium carbonate in a solvent and reacting at room temperature to obtain (2-benzamido-1-arylvinyl)dialkyl-phosphonate derivative; and hydrolyzing (2-benzamido-1-arylethyl) dialkylphosphonate derivative to obtain β-amino phosphonic acid derivative. The N-(arylvinyl) benzamide derivative is used as starting material. The raw materials are easy to obtain and are of many different types. A method of preparing β-aminophosphonic acid derivative includes: dissolving N-(arylvinyl)benzamide, dialkyl phosphite, manganese acetate and potassium carbonate in a solvent, reacting at room temperature to obtain (2-benzamide-1-arylvinyl) dialkyl phosphonate derivative, and then reducing and hydrolyzing the compound to obtain β-aminophosphonic acid derivative. The method of the invention has the advantages of short synthesis route, mild reaction conditions, simple reaction operation and post-treatment process, good yield, and is suitable for large-scale production.