A Formal, One-Pot β-Chlorination of Primary Alcohols and Its Utilization in the Transformation of Terpene Feedstock and the Synthesis of a C2-Symmetrical Terminal Bis-Epoxide
摘要:
A one-pot transformation of alkan-1-ols into 2-chloroalkan-1-ols is described. As a practical application, terpene-derived primary alcohols were converted into semiochemicals such as olfactory lactones (aerangis lactone, whisky lactone, and cognac lactone) and pheromones (cruentol and ferrugineol). Using heptane-1,7-diol as a bifunctional substrate, the corresponding bis-epoxide was synthesized by bidirectional synthesis in good yield and high enantioselectivity.
A Formal, One-Pot β-Chlorination of Primary Alcohols and Its Utilization in the Transformation of Terpene Feedstock and the Synthesis of a C2-Symmetrical Terminal Bis-Epoxide
摘要:
A one-pot transformation of alkan-1-ols into 2-chloroalkan-1-ols is described. As a practical application, terpene-derived primary alcohols were converted into semiochemicals such as olfactory lactones (aerangis lactone, whisky lactone, and cognac lactone) and pheromones (cruentol and ferrugineol). Using heptane-1,7-diol as a bifunctional substrate, the corresponding bis-epoxide was synthesized by bidirectional synthesis in good yield and high enantioselectivity.
A Formal, One-Pot β-Chlorination of Primary Alcohols and Its Utilization in the Transformation of Terpene Feedstock and the Synthesis of a <i>C</i><sub>2</sub>-Symmetrical Terminal Bis-Epoxide
作者:Jörg Swatschek、Lydia Grothues、Jonathan O. Bauer、Carsten Strohmann、Mathias Christmann
DOI:10.1021/jo402422b
日期:2014.2.7
A one-pot transformation of alkan-1-ols into 2-chloroalkan-1-ols is described. As a practical application, terpene-derived primary alcohols were converted into semiochemicals such as olfactory lactones (aerangis lactone, whisky lactone, and cognac lactone) and pheromones (cruentol and ferrugineol). Using heptane-1,7-diol as a bifunctional substrate, the corresponding bis-epoxide was synthesized by bidirectional synthesis in good yield and high enantioselectivity.