Reactive Oxygen Species (ROS)-Responsive Polymersomes with Site-Specific Chemotherapeutic Delivery into Tumors via Spacer Design Chemistry
作者:Eliézer Jäger、Vladimir Sincari、Lindomar J. C. Albuquerque、Alessandro Jäger、Jana Humajova、Jan Kucka、Jan Pankrac、Petr Paral、Tomas Heizer、Olga Janouskova、Rafał Konefał、Ewa Pavlova、Ondrej Sedlacek、Fernando C. Giacomelli、Pavla Pouckova、Ludek Sefc、Petr Stepanek、Martin Hruby
DOI:10.1021/acs.biomac.9b01748
日期:2020.4.13
The lack of cellular and tissue specificities in conventional chemotherapies along with the generation of a complex tumor microenvironment (TME) limits the dosage of active agents that reaches tumor sites, thereby resulting in ineffective responses and side effects. Therefore, the development of selective TME-responsive nanomedicines is of due relevance toward successful chemotherapies, albeit challenging. In this framework, we have synthesized novel, ready-to-use ROS-responsive amphiphilic block copolymers (BCs) with two different spacer chemistry designs to connect a hydrophobic boronic ester-based ROS sensor to the polymer backbone. Hydrodynamic flow focusing nanoprecipitation microfluidics (MF) was used in the preparation of well-defined ROS-responsive PSs; these were further characterized by a combination of techniques [1H NMR, dynamic light scattering (DLS), static light scattering (SLS), transmission electron microscopy (TEM), and cryogenic TEM (cryo-TEM)]. The reaction with hydrogen peroxide releases an amphiphilic phenol or a hydrophilic carboxylic acid, which affects polymersome (PS) stability and cargo release. Therefore, the importance of the spacer chemistry in BC deprotection and PS stability and cargo release is herein highlighted. We have also evaluated the impact of spacer chemistry on the PS-specific release of the chemotherapeutic drug doxorubicin (DOX) into tumors in vitro and in vivo. We demonstrate that by spacer chemistry design one can enhance the efficacy of DOX treatments (decrease in tumor growth and prolonged animal survival) in mice bearing EL4 T cell lymphoma. Side effects (weight loss and cardiotoxicity) were also reduced compared to free DOX administration, highlighting the potential of the well-defined ROS-responsive PSs as TME-selective nanomedicines. The PSs could also find applications in other environments with high ROS levels, such as chronic inflammations, aging, diabetes, cardiovascular diseases, and obesity.
常规化疗中缺乏细胞和组织特异性,加上复杂的肿瘤微环境(TME)的形成,限制了有效药物到达肿瘤部位的剂量,从而导致疗效不佳和副作用。因此,开发选择性TME响应的纳米药物对成功的化疗具有重要意义,尽管这具有挑战性。在此背景下,我们合成了新型的即用型ROS响应性两亲区块共聚物(BCs),采用两种不同的间隔化学设计,将疏水性硼酸酯基ROS传感器连接到聚合物主链上。通过水动力聚焦纳米沉淀微流体(MF)技术制备了定义良好的ROS响应性聚合体(PSs);随后使用多种技术对其进行了表征[1H NMR、动态光散射(DLS)、静态光散射(SLS)、透射电子显微镜(TEM)和冷冻透射电子显微镜(cryo-TEM)]。与过氧化氢反应释放出两亲性酚或亲水性羧酸,影响聚合体(PS)的稳定性和载荷释放。因此,间隔化学在BC去保护、PS稳定性和载荷释放中的重要性在此得到了强调。我们还评估了间隔化学对PS特异性释放化疗药物多柔比星(DOX)至肿瘤的影响,包括体外和体内实验。我们证明,通过间隔化学设计可以增强DOX治疗的效果(肿瘤生长减缓和动物存活时间延长),在携带EL4 T细胞淋巴瘤的小鼠中。与游离DOX给药相比,副作用(体重减轻和心脏毒性)也有所减少,突显了定义良好的ROS响应性PS作为TME选择性纳米药物的潜力。PS还可以在其他高ROS水平的环境中应用,如慢性炎症、衰老、糖尿病、心血管疾病和肥胖等。