摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

2-hydroxybenzoic acid beta-D-glucoside | 60517-74-0

中文名称
——
中文别名
——
英文名称
2-hydroxybenzoic acid beta-D-glucoside
英文别名
Glucosyl salicylate;[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] 2-hydroxybenzoate
2-hydroxybenzoic acid beta-D-glucoside化学式
CAS
60517-74-0
化学式
C13H16O8
mdl
——
分子量
300.265
InChiKey
XNHKMZHWRNMFCU-HMUNZLOLSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    238 °C - 240 °C
  • 沸点:
    531.3±50.0 °C(Predicted)
  • 密度:
    1.61±0.1 g/cm3(Predicted)
  • 溶解度:
    可溶于DMSO(少许)、甲醇(少许)

计算性质

  • 辛醇/水分配系数(LogP):
    -0.2
  • 重原子数:
    21
  • 可旋转键数:
    4
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.46
  • 拓扑面积:
    137
  • 氢给体数:
    5
  • 氢受体数:
    8

反应信息

  • 作为产物:
    描述:
    水杨酸4-硝基苯-Β-D-吡喃葡萄糖苷 在 rice transglycosidase Os9BGlu31 (wild type) 作用下, 以 aq. acetate buffer 为溶剂, 反应 0.5h, 生成 2-hydroxybenzoic acid beta-D-glucoside
    参考文献:
    名称:
    工程化更快的转糖苷酶及其受体特异性
    摘要:
    转糖苷酶是具有催化从生物质衍生的原料开始的各种高价值化合物合成的酶。改善其活性并拓宽底物范围是使该生物催化剂家族广泛应用的重要目标。在这项工作中,我们设计了20个水稻转糖苷酶Os9BGlu31突变体,并评估了它们在18种不同底物上的462次反应中的催化作用。这使我们能够鉴定出扩大了其底物范围并显示出高活性的突变体,包括W243L和W243N。我们还开发了双重突变体,例如L241D / W243N,它们在某些底物上具有很高的活性,并且对水解具有特殊的特异性。为了指导Os9BGlu31变体更普遍地用作转糖基化催化剂,我们基于底物的拓扑描述符建立了化学信息学模型。这些模型在外部验证集上显示出有用的预测潜力,并且允许鉴定出有效的催化途径,以催化新型目标植物激素和抗生素葡萄糖缀合物。
    DOI:
    10.1039/c9gc00621d
点击查看最新优质反应信息

文献信息

  • Metabolism of salicylic acid in wild-type, ugt74f1 and ugt74f2 glucosyltransferase mutants of Arabidopsis thaliana
    作者:John V. Dean、Sean P. Delaney
    DOI:10.1111/j.1399-3054.2007.01041.x
    日期:2008.4
    Arabidopsis thaliana contains two salicylic acid (SA) glucosyltransferase enzymes designated UGT74F1 and UGT74F2. UGT74F1 forms only SA 2‐O‐β‐D‐glucose (SAG), while UGT74F2 forms both SAG and the SA glucose ester (SGE). In an attempt to determine the in vivo role of each SA glucosyltransferase (SAGT), the metabolism of SA in ugt74f1 and ugt74f2 mutants was examined and compared with that of the wild‐type. The three major metabolites formed in wild‐type Arabidopsis included SAG, SGE, and 2,5‐dihydroxbenzoic acid 2‐O‐β‐D‐glucose (DHB2G). This is the first description of DHB2G as a major metabolite of SA in plants. The major metabolites of SA formed in ugt74f1 mutants were SGE, SAG and 2,5‐dihydroxybenzoic acid 5‐O‐β‐D‐glucose (DHB5G). DHB5G was not formed in the wild‐type plants. SAG and DHB2G were the main metabolites of SA in ugt74f2 mutants. The ugt74f2 mutant was unable to form SGE. Only SGE could be detected during in vitro SAGT assays of untreated wild‐type and ugt74f1 mutants. This activity was because of constitutive UGT74F2 activity. Both SGE and SAG could be formed during in vitro assays of SA‐pretreated wild‐type and ugt74f1 leaves. Neither SAG nor SGE could be detected during the in vitro SAGT assays of untreated ugt74f2 leaves. Only SAG was formed during the in vitro SAGT assays of SA‐pretreated ugt74f2 leaves. The SAG formation was a result of the UGT74F1 activity. This work demonstrates that changes in the activity of either SAGT enzyme can have a dramatic effect on the metabolism of exogenously supplied SA in Arabidopsis.
    Arabidopsis thaliana 中包含两种水杨酸(SA)葡萄糖基转移酶(SAGT),分别命名为UGT74F1和UGT74F2。UGT74F1仅形成SA 2-O-β-D-葡萄糖(SAG),而UGT74F2可以形成SAG和SA葡萄糖酯(SGE)。为了确定每种SA葡萄糖基转移酶在体内的功能,研究者比较了ugt74f1 ugt74f2 突变体与野生型植物中SA的代谢情况。 在野生型Arabidopsis 中,三种主要的代谢产物包括SAG、SGE和2,5-二羟基苯甲酸2-O-β-D-葡萄糖(DHB2G)。这是首次将DHB2G描述为植物中SA的主要代谢产物。在ugt74f1 突变体中,SA的主要代谢产物为SGE、SAG和2,5-二羟基苯甲酸5-O-β-D-葡萄糖(DHB5G)。DHB5G在野生型植物中并未形成。而在ugt74f2 突变体中,SAG和DHB2G是SA的主要代谢产物,且该突变体无法形成SGE。 在体外SAGT活性测定中,未处理的野生型和ugt74f1 突变体只能检测到SGE的形成,这一活性归因于UGT74F2的组成型活性。然而,在SA预处理的野生型和ugt74f1 叶片中,既能形成SGE也能形成SAG。在未经处理的ugt74f2 叶片中,无论是SGE还是SAG均未被检测到。然而,在SA预处理的ugt74f2 叶片中,只形成了SAG,这是由于UGT74F1的活性。 这项研究展示了两种SAGT酶活性的变化对拟南芥中外源供给的SA代谢产生的显著影响。
  • Metabolism of the Folate Precursor p-Aminobenzoate in Plants
    作者:Aymerick Eudes、Gale G. Bozzo、Jeffrey C. Waller、Valeria Naponelli、Eng-Kiat Lim、Dianna J. Bowles、Jesse F. Gregory、Andrew D. Hanson
    DOI:10.1074/jbc.m709591200
    日期:2008.5
    Plants produce p-aminobenzoate (pABA) in chloroplasts and use it for folate synthesis in mitochondria. In plant tissues, however, pABA is known to occur predominantly as its glucose ester (pABA-Glc), and the role of this metabolite in folate synthesis has not been defined. In this study, the UDP-glucose:pABA acyl-glucosyltransferase (pAGT) activity in Arabidopsis extracts was found to reside principally
    植物在叶绿体中产生对氨基苯甲酸 (pABA),并将其用于线粒体中的叶酸合成。然而,在植物组织中,pABA 主要以其葡萄糖酯 (pABA-Glc) 的形式存在,并且这种代谢物在叶酸合成中的作用尚未确定。在这项研究中,发现拟南芥提取物中的 UDP-葡萄糖:pABA 酰基葡萄糖基转移酶 (pAGT) 活性主要 (95%) 存在于一种异构体中,pABA 的表观 K(m) 为 0.12 mm。对重组拟南芥 UDP-糖基转移酶的筛选仅鉴定出三种识别 pABA 的酶。其中一个 (UGT75B1) 表现出比其他酶高得多的 k(cat)/K(m) 值,并且 pABA 的表观 K(m) (0.12 mm) 低得多,表明其与体内主要酶的同一性。支持这种可能性的是,UGT75B1 的消融使可提取的 pAGT 活性降低了 95%,体内 [(14)C]pABA 糖基化降低了 77%,内源性 pABA-Glc/pABA
  • Purification, Cloning, and Expression of a Pathogen Inducible UDP-glucose:Salicylic Acid Glucosyltransferase from Tobacco
    作者:Hyung-il Lee、Ilya Raskin
    DOI:10.1074/jbc.274.51.36637
    日期:1999.12
    Salicylic acid (SA) plays an important role in plant disease resistance. Inoculation of tobacco leaves with incompatible pathogens triggers the biosynthesis of SA which accumulates primarily as the SA 8-O-beta-D-glucoside (SAG) and glucosyl salicylate (GS). The tobacco UDP-glucose:salicylic acid glucosyltransferase (SA GTase) capable of forming both SAG and GS was purified, characterized, and partially sequenced. It has an apparent molecular mass of 48 kDa, a pH optimum of 7.0, and an isoelectric point at pH 4.4. UDP-glucose was the sole sugar donor for the enzyme. However, SA and several phenolics served as glucose accepters. The apparent K-m values for UDP-glucose and SA were 0.27 and 1-2 mar, respectively. Zn2+ and UDP inhibited its activity. The corresponding cDNA clone which encoded a protein of 459 amino acids was isolated from an SA-induced tobacco cDNA library and overexpressed in Escherichia coli. The recombinant protein catalyzed the formation of SAG and GS, and exhibited a broad specificity to simple phenolics, similar to that of the purified enzyme. Northern blot analysis showed that the SA GTase mRNA was induced both by SA and incompatible pathogens. The rapid induction timing of the mRNA by SA indicates that it belongs to the early SA response genes.
  • Song J.T., Mol Cells, 2006, 1016-8478, 233-8
    作者:Song J.T.
    DOI:——
    日期:——
  • Engineering faster transglycosidases and their acceptor specificity
    作者:Linh T. Tran、Vincent Blay、Sukanya Luang、Chatchakorn Eurtivong、Sunaree Choknud、Humbert González-Díaz、James R. Ketudat Cairns
    DOI:10.1039/c9gc00621d
    日期:——
    L241D/W243N. In order to guide a more general use of Os9BGlu31 variants as transglycosylation catalysts, we built cheminformatics models based on topological descriptors of the substrates. These models showed useful predictive potential on the external validation set and are allowing the identification of efficient catalytic routes to novel phytohormone and antibiotic glucoconjugates of interest.
    转糖苷酶是具有催化从生物质衍生的原料开始的各种高价值化合物合成的酶。改善其活性并拓宽底物范围是使该生物催化剂家族广泛应用的重要目标。在这项工作中,我们设计了20个水稻转糖苷酶Os9BGlu31突变体,并评估了它们在18种不同底物上的462次反应中的催化作用。这使我们能够鉴定出扩大了其底物范围并显示出高活性的突变体,包括W243L和W243N。我们还开发了双重突变体,例如L241D / W243N,它们在某些底物上具有很高的活性,并且对水解具有特殊的特异性。为了指导Os9BGlu31变体更普遍地用作转糖基化催化剂,我们基于底物的拓扑描述符建立了化学信息学模型。这些模型在外部验证集上显示出有用的预测潜力,并且允许鉴定出有效的催化途径,以催化新型目标植物激素和抗生素葡萄糖缀合物。
查看更多