Orthogonal Pd- and Cu-Based Catalyst Systems for C- and N-Arylation of Oxindoles
摘要:
In the cross-coupling reactions of unprotected oxindoles with aryl halides, Pd- and Cu-based catalyst systems displayed orthogonal chemoselectivity. A Pd-dialkylbiarylphosphine-based catalyst system chemoselectively arylated oxindole at the 3 position, while arylation occurred exclusively at the nitrogen using a Cu-diamine-based catalyst system. Computational examination of the relevant L1Pd(Ar)(oxindolate) and diamine-Cu(oxindolate) species was performed to gain mechanistic insight into the controlling features of the observed chemoselectivity.
The present invention relates to 4-arylindolinones, as well as pharmaceutical compositions thereof, capable of modulating protein kinase signal transduction in order to regulate, modulate and/or inhibit abnormal cell proliferation. The present invention also relates to methods for treating protein kinase related disorders.
A mild and regioselective Ullmann reaction of indazoles with aryliodides has been developed as a general method for the synthesis of 1-aryl-1H-indazoles. Water was used as the solvent wherein Tween 20 (2% w/w) was added to form aqueous micelles to improve solubility of starting materials and accelerate reaction rate. This aqueous protocol allows the Ullmann reaction to proceed at a mild temperature
A sequential one-pot classical aldol, transition-metal and hydride-free reductive aldol reaction is reported here for C(sp3)- H functionalization of 2-oxindoles using the multifaceted reagent rongalite. Here, rongalite functions as a hydride-free reducing agent and double C1 unit donor. This protocol enables the synthesis of a wide range of 3-methylindoline-2-ones and 3-(hydroxymethyl)-3-methylindolin-2-ones