Toward Protein-Cleaving Catalytic Drugs: Artificial Protease Selective for Myoglobin
摘要:
A protein-cleaving catalyst highly selective for a disease-related protein can be used as a catalytic drug. As the first protein-cleaving catalyst selective for a protein substrate, a catalyst for myoglobin (Mb) was designed by attaching the Cu(II) or Co(III) complex of cyclen to a binding site searched by a combinatorial method using peptide nucleic acid monomers as building units. Various linkers were inserted between the catalytic Co(III) center and the binding site of the Mb-cleaving catalyst. Kinetic data revealed catalytic turnover of the Mb cleavage by the Cu(II) or Co(III) complex. MALDI-TOF MS revealed cleavage of the polypeptide backbone of Mb at selected positions. N-Terminal sequencing of the cleavage products identified the cleavage site and provided evidence for the hydrolytic nature of the Mb cleavage. Various chelating ligands were tested as the ligand for the Co(III) center of the Mb-cleaving catalyst. Among the nine chelating ligands examined, only cyclen and its triaza-monooxo analogue manifested catalytic activity. (C) 2003 Elsevier Science Ltd. All rights reserved.
Toward Protein-Cleaving Catalytic Drugs: Artificial Protease Selective for Myoglobin
摘要:
A protein-cleaving catalyst highly selective for a disease-related protein can be used as a catalytic drug. As the first protein-cleaving catalyst selective for a protein substrate, a catalyst for myoglobin (Mb) was designed by attaching the Cu(II) or Co(III) complex of cyclen to a binding site searched by a combinatorial method using peptide nucleic acid monomers as building units. Various linkers were inserted between the catalytic Co(III) center and the binding site of the Mb-cleaving catalyst. Kinetic data revealed catalytic turnover of the Mb cleavage by the Cu(II) or Co(III) complex. MALDI-TOF MS revealed cleavage of the polypeptide backbone of Mb at selected positions. N-Terminal sequencing of the cleavage products identified the cleavage site and provided evidence for the hydrolytic nature of the Mb cleavage. Various chelating ligands were tested as the ligand for the Co(III) center of the Mb-cleaving catalyst. Among the nine chelating ligands examined, only cyclen and its triaza-monooxo analogue manifested catalytic activity. (C) 2003 Elsevier Science Ltd. All rights reserved.
Toward Protein-Cleaving Catalytic Drugs: Artificial Protease Selective for Myoglobin
作者:Joong Won Jeon、Sang Jun Son、Chang Eun Yoo、In Seok Hong、Junghun Suh
DOI:10.1016/s0968-0896(03)00216-5
日期:2003.7
A protein-cleaving catalyst highly selective for a disease-related protein can be used as a catalytic drug. As the first protein-cleaving catalyst selective for a protein substrate, a catalyst for myoglobin (Mb) was designed by attaching the Cu(II) or Co(III) complex of cyclen to a binding site searched by a combinatorial method using peptide nucleic acid monomers as building units. Various linkers were inserted between the catalytic Co(III) center and the binding site of the Mb-cleaving catalyst. Kinetic data revealed catalytic turnover of the Mb cleavage by the Cu(II) or Co(III) complex. MALDI-TOF MS revealed cleavage of the polypeptide backbone of Mb at selected positions. N-Terminal sequencing of the cleavage products identified the cleavage site and provided evidence for the hydrolytic nature of the Mb cleavage. Various chelating ligands were tested as the ligand for the Co(III) center of the Mb-cleaving catalyst. Among the nine chelating ligands examined, only cyclen and its triaza-monooxo analogue manifested catalytic activity. (C) 2003 Elsevier Science Ltd. All rights reserved.