摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

N-(1,3-benzodioxol-5-ylmethyl)cyclohexanamine | 227017-79-0

中文名称
——
中文别名
——
英文名称
N-(1,3-benzodioxol-5-ylmethyl)cyclohexanamine
英文别名
N-cyclohexyl-1,3-benzodioxole-5-methanamine;Benzo[1,3]dioxol-5-ylmethyl-cyclohexyl-amine
N-(1,3-benzodioxol-5-ylmethyl)cyclohexanamine化学式
CAS
227017-79-0
化学式
C14H19NO2
mdl
MFCD00444188
分子量
233.31
InChiKey
FBAHREKIQKXPBS-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    351.8±11.0 °C(Predicted)
  • 密度:
    1.14±0.1 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    3.1
  • 重原子数:
    17
  • 可旋转键数:
    3
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.571
  • 拓扑面积:
    30.5
  • 氢给体数:
    1
  • 氢受体数:
    3

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    N-(1,3-benzodioxol-5-ylmethyl)cyclohexanamine氯化亚砜 、 lithium hydroxide monohydrate 、 作用下, 以 四氢呋喃1,4-二氧六环甲醇N,N-二甲基甲酰胺甲苯 为溶剂, 反应 175.5h, 生成 2-[(1,3-benzodioxol-5-ylmethyl)(cyclohexyl)amino]-1,3-thiazole-4-carboxamide
    参考文献:
    名称:
    Tuning and predicting biological affinity: aryl nitriles as cysteine protease inhibitors
    摘要:
    制备了一系列芳基腈基配体,以研究它们的亲电性对与胱氨酸蛋白酶罗德西亚酶和人类组织蛋白酶L的亲和力的影响。密度泛函理论计算提供了这些腈的相对反应性,使得能够预测它们的生物亲和力和细胞毒性,并明确了结构-活性关系。
    DOI:
    10.1039/c2ob00034b
  • 作为产物:
    描述:
    3,4-亚甲二氧基苄胺环己胺 在 {[(PCy3)(CO)RuH]4(μ-O)(μ-OH)2} 、 对叔丁基邻苯二酚 作用下, 以 氯苯 为溶剂, 反应 16.0h, 以59%的产率得到N-(1,3-benzodioxol-5-ylmethyl)cyclohexanamine
    参考文献:
    名称:
    配体促进的钌催化的伯胺的脱氨偶联反应合成对称和不对称的仲胺
    摘要:
    从四核Ru-H与邻苯二酚配体(1 / L1)配合物原位生成的催化体系被发现对于两个伯胺的直接脱氨反应形成仲胺是有效的。催化剂1 / L1具有高度化学选择性,可促进两种不同伯胺的偶联,从而获得不对称仲胺。苯胺与伯胺的类似偶联形成芳基取代的仲胺。用4-甲氧基苄胺处理苯胺-d 7导致偶联产物在CH 2上具有明显的氘掺入(18%D)。在从4-甲氧基苄胺的偶联反应中分离出的产物的α-碳上观察到最明显的碳同位素效应(C(1)= 1.015(2))。通过测量4-甲氧基苯胺与一系列对位取代的苄胺4-XC 6 H 4 CH 2 NH 2(X = OMe,Me,H,F,CF 3)的偶联反应速率来构建Hammett图( ρ= −0.79±0.1)。基于这些结果,提出了一种可行的偶联反应机理。催化偶联方法提供了操作上简单且化学选择性的仲胺产物合成,而无需使用任何反应性试剂或形成浪费的副产物。
    DOI:
    10.1021/acs.joc.8b00649
点击查看最新优质反应信息

文献信息

  • Optimization of Triazine Nitriles as Rhodesain Inhibitors: Structure-Activity Relationships, Bioisosteric Imidazopyridine Nitriles, and X-ray Crystal Structure Analysis with Human Cathepsin L
    作者:Veronika Ehmke、Edwin Winkler、David W. Banner、Wolfgang Haap、W. Bernd Schweizer、Matthias Rottmann、Marcel Kaiser、Céline Freymond、Tanja Schirmeister、François Diederich
    DOI:10.1002/cmdc.201300112
    日期:2013.6
    Variation of the S2 substituent led to high‐affinity ligands with inhibition constants down to 2 nM for compounds bearing cyclohexyl substituents. Systematic investigations on the S3 pocket revealed its potential to achieve high activities with aromatic vectors that undergo stacking interactions with the planar peptide backbone forming part of the pocket. X‐ray crystal structure analysis with the structurally
    引起非洲昏睡病的布鲁氏锥虫寄生虫的半胱氨酸蛋白酶罗氏蛋白酶已成为开发新候选药物的目标。基于三嗪腈部分作为亲电头基,使用基于结构的设计对酶的S1,S2和S3口袋的取代基进行了优化研究,得到了抑制剂,其抑制常数在个位数纳摩尔范围内。全面的结构-活性关系阐明了活性位点各个口袋的结合偏好。S1口袋可容忍各种取代基,其中优先选择挠性和碱性侧链。S2取代基的变化导致抑制亲和力低至2 n M的高亲和力配体用于带有环己基取代基的化合物。对S3口袋的系统研究表明,它有可能通过芳香族载体实现高活性,这些芳香族载体与形成口袋的一部分的平面肽骨架进行堆叠相互作用。用结构相关酶人组织蛋白酶L的X射线晶体结构分析证实了分子建模所提出的三嗪配体系列的结合模式。通过优化周期确定的最佳取代基修饰的配体可实现亚微摩尔对培养寄生虫增殖的抑制。在基于细胞的测定中,在抑制剂上引入基本侧链导致抗锥虫活性提高了35倍。最后,为了减少三
  • Metal-Free Formal Oxidative C−C Coupling by In Situ Generation of an Enolonium Species
    作者:Daniel Kaiser、Aurélien de la Torre、Saad Shaaban、Nuno Maulide
    DOI:10.1002/anie.201701538
    日期:2017.5.15
    contemporary organic synthesis relies on transformations that are driven by the intrinsic, so‐called “natural”, polarity of chemical bonds and reactive centers. The design of unconventionally polarized synthons is a highly desirable strategy, as it generally enables unprecedented retrosynthetic disconnections for the synthesis of complex substances. Whereas the umpolung of carbonyl centers is a well‐known
    当代许多有机合成都依赖于化学键和反应中心固有的,所谓的“天然”极性驱动的转变。非常规极化合成子的设计是非常需要的策略,因为它通常能够实现复杂物质合成的空前的逆合成断开。羰基中心的空位化是众所周知的策略,而羰基α位的极性反转要少得多。在本文中,我们报告了一种新型亲电子en烯的设计及其在高效和化学选择性,无金属的氧化C-C偶联中的应用。
  • Tuning and predicting biological affinity: aryl nitriles as cysteine protease inhibitors
    作者:Veronika Ehmke、Jose Enrico Q. Quinsaat、Pablo Rivera-Fuentes、Cornelia Heindl、Céline Freymond、Matthias Rottmann、Reto Brun、Tanja Schirmeister、François Diederich
    DOI:10.1039/c2ob00034b
    日期:——
    A series of aryl nitrile-based ligands were prepared to investigate the effect of their electrophilicity on the affinity against the cysteine proteases rhodesain and human cathepsin L. Density functional theory calculations provided relative reactivities of the nitriles, enabling prediction of their biological affinity and cytotoxicity and a clear structure–activity relationship.
    制备了一系列芳基腈基配体,以研究它们的亲电性对与胱氨酸蛋白酶罗德西亚酶和人类组织蛋白酶L的亲和力的影响。密度泛函理论计算提供了这些腈的相对反应性,使得能够预测它们的生物亲和力和细胞毒性,并明确了结构-活性关系。
  • Synthesis of Symmetric and Unsymmetric Secondary Amines from the Ligand-Promoted Ruthenium-Catalyzed Deaminative Coupling Reaction of Primary Amines
    作者:Pandula T. Kirinde Arachchige、Hanbin Lee、Chae S. Yi
    DOI:10.1021/acs.joc.8b00649
    日期:2018.5.4
    found to be effective for the direct deaminative coupling of two primary amines to form secondary amines. The catalyst 1/L1 was highly chemoselective for promoting the coupling of two different primary amines to afford unsymmetric secondary amines. The analogous coupling of aniline with primary amines formed aryl-substituted secondary amines. The treatment of aniline-d7 with 4-methoxybenzylamine led to
    从四核Ru-H与邻苯二酚配体(1 / L1)配合物原位生成的催化体系被发现对于两个伯胺的直接脱氨反应形成仲胺是有效的。催化剂1 / L1具有高度化学选择性,可促进两种不同伯胺的偶联,从而获得不对称仲胺。苯胺与伯胺的类似偶联形成芳基取代的仲胺。用4-甲氧基苄胺处理苯胺-d 7导致偶联产物在CH 2上具有明显的氘掺入(18%D)。在从4-甲氧基苄胺的偶联反应中分离出的产物的α-碳上观察到最明显的碳同位素效应(C(1)= 1.015(2))。通过测量4-甲氧基苯胺与一系列对位取代的苄胺4-XC 6 H 4 CH 2 NH 2(X = OMe,Me,H,F,CF 3)的偶联反应速率来构建Hammett图( ρ= −0.79±0.1)。基于这些结果,提出了一种可行的偶联反应机理。催化偶联方法提供了操作上简单且化学选择性的仲胺产物合成,而无需使用任何反应性试剂或形成浪费的副产物。
查看更多

同类化合物

(5-(4-乙氧基-3-甲基苄基)-1,3-苯并二恶茂) 黄樟素氧化物 黄樟素乙二醇; 2',3'-二氢-2',3'-二羟基黄樟素 黄樟素 风藤酰胺 非哌西特盐酸盐 非哌西特 盐酸盐 角秋水仙碱 螺[1,3-苯并二氧戊环-2,1'-环己烷]-5-胺 蓝细菌 苯并[d][1,3]二氧杂环戊烯-5-胺盐酸盐 苯并[d][1,3]二氧代l-5-甲基(2-氧代乙基)氨基甲酸叔丁酯 苯并[d][1,3]二氧代l-5-氨基甲酸叔丁酯 苯并[d][1,3]二氧代-4-甲腈 苯并[d][1,3]二氧代-4-氨基甲酸叔丁酯 苯并[d[1,3]二氧代-4-羧酰胺 苯并[1,3]二氧杂环戊烯-5-基甲基2-氯乙酸酯 苯并[1,3]二氧杂环戊烯-5-基甲基-苄基-胺 苯并[1,3]二氧杂环戊烯-5-基甲基-[2-(4-氟-苯基)-乙基]-胺 苯并[1,3]二氧杂环戊烯-5-基甲基-(四氢-呋喃-2-基甲基)-胺 苯并[1,3]二氧杂环戊烯-5-基甲基-(2-氟-苄基)-胺 苯并[1,3]二氧杂环戊烯-5-基甲基-(1-甲基-哌啶-4-基)-胺 苯并[1,3]二氧代l-5-甲基-吡啶-3-甲基-胺 苯并[1,3]二氧代l-5-甲基-(4-氟-苄基)-胺 苯并[1,3]二氧代l-5-乙酸甲酯 苯并[1,3]二氧代-5-羧酰胺盐酸盐 苯并[1,3]二氧代-5-甲基肼盐酸盐 苯并[1,3]二氧代-5-甲基吡啶-4-甲胺 苯并[1,3]二氧代-5-甲基-吡啶-2-甲胺 苯并[1,3]二氧代-5-乙酰氯 苯并-1,3-二氧杂环戊烯-5-甲醇丙酸酯 苯乙酸,1-(1,3-苯并二氧杂环戊烯-5-基)-3-丁烯-1-基酯 苯乙酮O-((4-(3,4-亚甲二氧基苄基)-1-哌嗪-1-基)羰基甲基)肟 苯,1-甲氧基-6-硝基-3,4-亚甲二氧基- 芝麻酚 胡椒醛肟 胡椒醛,二苄基缩硫醛 胡椒醛 胡椒醇 胡椒酸酰氯 胡椒酸 胡椒腈 胡椒环乙酮肟 胡椒环 胡椒基重氮酮 胡椒基甲醛 胡椒基氯 胡椒基戊二烯酸钾 胡椒基丙醛 胡椒基丙酮