In order to construct tools able to screen oligosaccharide−protein interactions, we have developed a polypyrrole-based oligosaccharide chip constructed via a copolymerization process of pyrrole and pyrrole-modified oligosaccharide. For our study, GAG (glycosaminoglycans) or GAG fragments, which are involved in many fundamental biological processes, were modified by the pyrrole moiety on their reducing end and then immobilized on the chip. The parallel binding events on the upperside of the surface can be simultaneously monitored and quantified in real time and without labeling by surface plasmon resonance imaging (SPRi). We show that electrocopolymerization of the oligosaccharide−pyrrole above a gold surface enables the covalent immobilization of multiple probes and the subsequent monitoring of their binding capacities using surface plasmon resonance imaging. Moreover, a biological application was made involving different GAG fragments and different proteins, including stromal cell-derived factor-1α (SDF-1α), interferon-γ (IFN-γ), and monoclonal antibody showing different affinity pattern.
为了构建能够筛选
寡糖-蛋白质相互作用的工具,我们开发了一种基于聚
吡咯的
寡糖芯片,它是通过
吡咯和
吡咯修饰
寡糖的共聚过程构建而成的。在我们的研究中,参与许多基本
生物过程的 GAG(糖胺聚糖)或 GAG 片段被
吡咯分子修饰其还原端,然后固定在芯片上。通过表面等离子体共振成像(
SPRi),可以同时实时监测和量化表面上侧的平行结合事件,而无需标记。我们的研究表明,在
金表面上对低聚糖-
吡咯进行电聚合,可以共价固定多个探针,然后利用表面等离子体共振成像技术监测它们的结合能力。此外,在
生物应用中,不同的 GAG 片段和不同的蛋白质(包括基质细胞衍生因子-1α(
SDF-1α)、干扰素-γ(IFN-γ)和单克隆
抗体)显示出不同的亲和模式。