1,3,8-Triazaspiro[4.5]decane-2,4-diones as Efficacious Pan-Inhibitors of Hypoxia-Inducible Factor Prolyl Hydroxylase 1–3 (HIF PHD1–3) for the Treatment of Anemia
摘要:
The discovery of 1,3,8-triazaspiro[4.5]decane-2,4-diones (spirohydantoins) as a structural class of pan-inhibitors of the prolyl hydroxylase (PHD) family of enzymes for the treatment of anemia is described. The initial hit class, spirooxindoles, was identified through affinity selection mass spectrometry (AS-MS) and optimized for PHD2 inhibition and optimal PK/PD profile (short-acting PHDi inhibitors). 1,3,8-Triazaspiro[4.5]decane-2,4-diones (spirohydantoins) were optimized as an advanced lead class derived from the original spiroindole hit. A new set of general conditions for C-N coupling, developed using a high-throughput experimentation (HTE) technique, enabled a full SAR analysis of the spirohydantoins. This rapid and directed SAR exploration has resulted in the first reported examples of hydantoin derivatives with good PK in preclinical species. Potassium channel off-target activity (hERG) was successfully eliminated through the systematic introduction of acidic functionality to the molecular structure. Undesired upregulation of alanine aminotransferese (ALT) liver enzymes was mitigated and a robust on-/off-target margin was achieved. Spirohydantoins represent a class of highly efficacious, short-acting PHD1-3 inhibitors causing a robust erythropoietin (EPO) upregulation in vivo in multiple preclinical species. This profile deems spirohydantoins as attractive short-acting PHDi inhibitors with the potential for treatment of anemia.
[EN] 1H-PYRAZOLO[4,3-B]PYRIDINES AS PDE1 INHIBITORS<br/>[FR] 1H-PYRAZOLO [4,3-B] PYRIDINES EN TANT QU'INHIBITEURS DE PDE1
申请人:H LUNDBECK AS
公开号:WO2018007249A1
公开(公告)日:2018-01-11
The present invention provides 1H-pyrazolo[4,3-b]pyridin-7-amines of formula (I) as PDE1 inhibitors and their use as a medicament, in particular for the treatment of neurodegenerative disorders and psychiatric disorders.
[EN] COMBINATION TREATMENTS COMPRISING ADMINISTRATION OF 1H-PYRAZOLO[4,3-B]PYRIDINES<br/>[FR] TRAITEMENTS COMBINÉS COMPRENANT L'ADMINISTRATION DE 1H-PYRAZOLO [4,3-B] PYRIDINES
申请人:H LUNDBECK AS
公开号:WO2019115567A1
公开(公告)日:2019-06-20
The present invention provides 1H-pyrazolo[4,3-b]pyridin-7-amines of formula (I) as PDE1 inhibitors together with a second compound useful in the treatment of a neurodegenerative disorder and their combined use as a medicament, in particular for the treatment of neurodegenerative and/or cognitive disorders.
The present invention provides 1H-pyrazolo[4,3-b]pyridines of formula (I) as PDE1 inhibitors and their use as a medicament, in particular for the treatment of neurodegenerative disorders and psychiatric disorders.
1,3,8-Triazaspiro[4.5]decane-2,4-diones as Efficacious Pan-Inhibitors of Hypoxia-Inducible Factor Prolyl Hydroxylase 1–3 (HIF PHD1–3) for the Treatment of Anemia
作者:Petr Vachal、Shouwu Miao、Joan M. Pierce、Deodial Guiadeen、Vincent J. Colandrea、Matthew J. Wyvratt、Scott P. Salowe、Lisa M. Sonatore、James A. Milligan、Richard Hajdu、Anantha Gollapudi、Carol A. Keohane、Russell B. Lingham、Suzanne M. Mandala、Julie A. DeMartino、Xinchun Tong、Michael Wolff、Dietrich Steinhuebel、Gerard R. Kieczykowski、Fred J. Fleitz、Kevin Chapman、John Athanasopoulos、Gregory Adam、Can D. Akyuz、Dhirendra K. Jena、Jeffrey W. Lusen、Juncai Meng、Benjamin D. Stein、Lei Xia、Edward C. Sherer、Jeffrey J. Hale
DOI:10.1021/jm201542d
日期:2012.4.12
The discovery of 1,3,8-triazaspiro[4.5]decane-2,4-diones (spirohydantoins) as a structural class of pan-inhibitors of the prolyl hydroxylase (PHD) family of enzymes for the treatment of anemia is described. The initial hit class, spirooxindoles, was identified through affinity selection mass spectrometry (AS-MS) and optimized for PHD2 inhibition and optimal PK/PD profile (short-acting PHDi inhibitors). 1,3,8-Triazaspiro[4.5]decane-2,4-diones (spirohydantoins) were optimized as an advanced lead class derived from the original spiroindole hit. A new set of general conditions for C-N coupling, developed using a high-throughput experimentation (HTE) technique, enabled a full SAR analysis of the spirohydantoins. This rapid and directed SAR exploration has resulted in the first reported examples of hydantoin derivatives with good PK in preclinical species. Potassium channel off-target activity (hERG) was successfully eliminated through the systematic introduction of acidic functionality to the molecular structure. Undesired upregulation of alanine aminotransferese (ALT) liver enzymes was mitigated and a robust on-/off-target margin was achieved. Spirohydantoins represent a class of highly efficacious, short-acting PHD1-3 inhibitors causing a robust erythropoietin (EPO) upregulation in vivo in multiple preclinical species. This profile deems spirohydantoins as attractive short-acting PHDi inhibitors with the potential for treatment of anemia.