Aromatase inhibitors. Synthesis and biological activity of androstenedione derivatives
摘要:
The synthesis and biological evaluation of androstenedione derivatives as inhibitors of estrogen biosynthesis are described. The results show that 4-hydroxy analogues are among the most potent in vitro inhibitors of the series. Esterification of the 4-hydroxy steroids generally reduced activity. Further conjugation of the 3-keto 4-ene system to give 4-hydroxy-4,6-androstadiene-3,17-dione caused more rapid inactivation of aromatase in rat ovarian microsomes than 4-hydroxyandrostenedione. Some compounds exhibited differences in activity when tested for inhibition of human placental microsomes vs. rat ovarian microsomes. The 4-hydroxyandrostenedione derivatives and their nonbulky esters were generally more potent in vitro and in vivo inhibitors than other substituted steroids in the series. Several of the synthesized compounds markedly reduce (50-81%) estrogen levels in rats on proestrus and/or had antifertility action. To date, none of the compounds surpassed the in vivo inhibitory action of 4-hydroxy-4-androstene-3,17-dione or its 4-acetate derivative.
Aromatase inhibitors. Synthesis and biological activity of androstenedione derivatives
摘要:
The synthesis and biological evaluation of androstenedione derivatives as inhibitors of estrogen biosynthesis are described. The results show that 4-hydroxy analogues are among the most potent in vitro inhibitors of the series. Esterification of the 4-hydroxy steroids generally reduced activity. Further conjugation of the 3-keto 4-ene system to give 4-hydroxy-4,6-androstadiene-3,17-dione caused more rapid inactivation of aromatase in rat ovarian microsomes than 4-hydroxyandrostenedione. Some compounds exhibited differences in activity when tested for inhibition of human placental microsomes vs. rat ovarian microsomes. The 4-hydroxyandrostenedione derivatives and their nonbulky esters were generally more potent in vitro and in vivo inhibitors than other substituted steroids in the series. Several of the synthesized compounds markedly reduce (50-81%) estrogen levels in rats on proestrus and/or had antifertility action. To date, none of the compounds surpassed the in vivo inhibitory action of 4-hydroxy-4-androstene-3,17-dione or its 4-acetate derivative.
1,4,6-androstatriene-3,17-dione ("ATD") for therapeutic uses
申请人:Kneller W. Bruce
公开号:US20060154909A1
公开(公告)日:2006-07-13
A composition having modified or derivative of 1,4,6-androstatriene-3,17-dione (“ATD”) will improve the health of mammalian subjects. The improvement of health is achieved with the administration of an effective amount of the at least one modified or derivative of 1,4,6-androstatriene-3,17-dione. Particularly, health is improved for a subject suffering with a gynecomastia, and/or estrogen-dependent cancer. Also, subjects recovering from steroid misuse/abuse with treatment in accordance with the present invention. Other improvements found to occur with an administration of ATD is that growth is enhanced and/or stimulated in developing mammals, recovery is shortened in cases of severe trauma or burns, mood levels are improved, male fertility is improved, and athletic performance is improved by increasing testosterone and lean muscle mass.
Aromatase inhibitors. Synthesis and biological activity of androstenedione derivatives
作者:David A. Marsh、Harry J. Brodie、Wesley Garrett、Chon Hwa Tsai-Morris、Angela M. H. Brodie
DOI:10.1021/jm00383a017
日期:1985.6
The synthesis and biological evaluation of androstenedione derivatives as inhibitors of estrogen biosynthesis are described. The results show that 4-hydroxy analogues are among the most potent in vitro inhibitors of the series. Esterification of the 4-hydroxy steroids generally reduced activity. Further conjugation of the 3-keto 4-ene system to give 4-hydroxy-4,6-androstadiene-3,17-dione caused more rapid inactivation of aromatase in rat ovarian microsomes than 4-hydroxyandrostenedione. Some compounds exhibited differences in activity when tested for inhibition of human placental microsomes vs. rat ovarian microsomes. The 4-hydroxyandrostenedione derivatives and their nonbulky esters were generally more potent in vitro and in vivo inhibitors than other substituted steroids in the series. Several of the synthesized compounds markedly reduce (50-81%) estrogen levels in rats on proestrus and/or had antifertility action. To date, none of the compounds surpassed the in vivo inhibitory action of 4-hydroxy-4-androstene-3,17-dione or its 4-acetate derivative.