B(C 6 F 5)3催化的环状酰亚胺的氢化硅烷化提供了吡咯烷的有效合成方法。在5mol%B(C 6 F 5)3的存在下,各种芳族,脂族和多环酰亚胺被PhSiH 3平滑还原,从而以高收率生成相应的吡咯烷。通过1 H NMR光谱监测的反应曲线揭示了环酰亚胺的还原过程以及氢化硅烷的不同结构对氢化硅烷化的影响。
3‐disubstituted phthalides in good to high yields at ambienttemperature. In a similar manner, 3‐hydroxyisoindolin‐1‐one and 3‐hydroxyoxindole derivatives could also be easily prepared by direct reductive coupling of phthalimides and N‐substituted isatins with activated alkenes, respectively. Application of this methodology towards the synthesis of 1‐naphthol derivatives on a gram scale is also depicted
realized via tandem reduction and rearrangement. Using TMSOK as the catalyst and (EtO)2MeSiH as the reductant, a series of cyclic imides containing different functional groups were reduced to the corresponding 3-aryl isoquinolines in moderate to good yields. The scenario of the reaction pathway was supposed to involve the reduction of imides to ω-hydroxylactams, which underwent rearrangement in the presence