摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

tert-butyl-[(5Z)-cyclodec-5-en-1-yl]oxy-dimethylsilane | 152063-70-2

中文名称
——
中文别名
——
英文名称
tert-butyl-[(5Z)-cyclodec-5-en-1-yl]oxy-dimethylsilane
英文别名
——
tert-butyl-[(5Z)-cyclodec-5-en-1-yl]oxy-dimethylsilane化学式
CAS
152063-70-2
化学式
C16H32OSi
mdl
——
分子量
268.515
InChiKey
CXBVWQNOQBOFML-SREVYHEPSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    303.3±31.0 °C(Predicted)
  • 密度:
    0.86±0.1 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    5.68
  • 重原子数:
    18
  • 可旋转键数:
    3
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.88
  • 拓扑面积:
    9.2
  • 氢给体数:
    0
  • 氢受体数:
    1

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    参考文献:
    名称:
    Electrophilic and radical transannular cyclizations of 5-cyclodecenone to give either hydronaphthalene or hydroazulene products
    摘要:
    The transannular cyclizations of the E and Z double-bond isomers of 5-cyclodecenone were investigated in order to determine the regio- and stereochemical preferences of the unsubstituted ring system. Electrophilic cyclization of the E isomer under either protic or Lewis acid conditions led to hydronaphthalenols with a preference for the trans ring fusion, while the Z led to only cis-fused hydronaphthalenols. Cyclization of the ketyl radical generated from the ketone led exclusively to a cis-fused hydroazulenol, regardless of double-bond geometry, although the E isomer was considerably more reactive than the Z isomer. The stereochemistry of the ring fusion in the products from (E)-5-cyclodecenone can be rationalized by cyclization through its lowest energy conformations in which the carbonyl oxygen is anti to the alkene hydrogen at C6, leading to the trans-fused hydronaphthalenol, and syn to the alkene hydrogen at C5, leading to the cis-fused hydroazulenol. For (Z)-5-cyclodecenone, molecular mechanics calculations found two low energy conformations, only one of which brings the alkene and the carbonyl groups close enough for their reaction with each other. In this conformation, the alkene hydrogens at C5 and C6 are syn to the oxygen of the ketone, leading to a cis ring fusion regardless of whether 1,5- or 1,6-cyclization is observed. The difference in regiochemistry in radical versus electrophilic cyclizations is explicable on the basis of the differences in mechanism for the two reaction pathways. The radical cyclizations are kinetic in nature with the ketyl radical adding to the proximate C5 alkene carbon in a very exothermic step, akin to the cyclization of 1-hexenyl radicals. The stereochemistry of the acid-induced cyclizations can be explained through the intermedicacy of either nonclassical or contact ion pairs, the regiochemistry reflecting the greater stability of the hydronaphthalene ring system over the hydroazulene. A system of nomenclature for unambiguously labeling each of the low energy conformations of (E)-5-cyclodecenones is also proposed.
    DOI:
    10.1021/jo00075a025
  • 作为产物:
    参考文献:
    名称:
    Electrophilic and radical transannular cyclizations of 5-cyclodecenone to give either hydronaphthalene or hydroazulene products
    摘要:
    The transannular cyclizations of the E and Z double-bond isomers of 5-cyclodecenone were investigated in order to determine the regio- and stereochemical preferences of the unsubstituted ring system. Electrophilic cyclization of the E isomer under either protic or Lewis acid conditions led to hydronaphthalenols with a preference for the trans ring fusion, while the Z led to only cis-fused hydronaphthalenols. Cyclization of the ketyl radical generated from the ketone led exclusively to a cis-fused hydroazulenol, regardless of double-bond geometry, although the E isomer was considerably more reactive than the Z isomer. The stereochemistry of the ring fusion in the products from (E)-5-cyclodecenone can be rationalized by cyclization through its lowest energy conformations in which the carbonyl oxygen is anti to the alkene hydrogen at C6, leading to the trans-fused hydronaphthalenol, and syn to the alkene hydrogen at C5, leading to the cis-fused hydroazulenol. For (Z)-5-cyclodecenone, molecular mechanics calculations found two low energy conformations, only one of which brings the alkene and the carbonyl groups close enough for their reaction with each other. In this conformation, the alkene hydrogens at C5 and C6 are syn to the oxygen of the ketone, leading to a cis ring fusion regardless of whether 1,5- or 1,6-cyclization is observed. The difference in regiochemistry in radical versus electrophilic cyclizations is explicable on the basis of the differences in mechanism for the two reaction pathways. The radical cyclizations are kinetic in nature with the ketyl radical adding to the proximate C5 alkene carbon in a very exothermic step, akin to the cyclization of 1-hexenyl radicals. The stereochemistry of the acid-induced cyclizations can be explained through the intermedicacy of either nonclassical or contact ion pairs, the regiochemistry reflecting the greater stability of the hydronaphthalene ring system over the hydroazulene. A system of nomenclature for unambiguously labeling each of the low energy conformations of (E)-5-cyclodecenones is also proposed.
    DOI:
    10.1021/jo00075a025
点击查看最新优质反应信息

文献信息

  • Electrophilic and radical transannular cyclizations of 5-cyclodecenone to give either hydronaphthalene or hydroazulene products
    作者:David Colclough、James B. White、William B. Smith、Yongliang Chu
    DOI:10.1021/jo00075a025
    日期:1993.11
    The transannular cyclizations of the E and Z double-bond isomers of 5-cyclodecenone were investigated in order to determine the regio- and stereochemical preferences of the unsubstituted ring system. Electrophilic cyclization of the E isomer under either protic or Lewis acid conditions led to hydronaphthalenols with a preference for the trans ring fusion, while the Z led to only cis-fused hydronaphthalenols. Cyclization of the ketyl radical generated from the ketone led exclusively to a cis-fused hydroazulenol, regardless of double-bond geometry, although the E isomer was considerably more reactive than the Z isomer. The stereochemistry of the ring fusion in the products from (E)-5-cyclodecenone can be rationalized by cyclization through its lowest energy conformations in which the carbonyl oxygen is anti to the alkene hydrogen at C6, leading to the trans-fused hydronaphthalenol, and syn to the alkene hydrogen at C5, leading to the cis-fused hydroazulenol. For (Z)-5-cyclodecenone, molecular mechanics calculations found two low energy conformations, only one of which brings the alkene and the carbonyl groups close enough for their reaction with each other. In this conformation, the alkene hydrogens at C5 and C6 are syn to the oxygen of the ketone, leading to a cis ring fusion regardless of whether 1,5- or 1,6-cyclization is observed. The difference in regiochemistry in radical versus electrophilic cyclizations is explicable on the basis of the differences in mechanism for the two reaction pathways. The radical cyclizations are kinetic in nature with the ketyl radical adding to the proximate C5 alkene carbon in a very exothermic step, akin to the cyclization of 1-hexenyl radicals. The stereochemistry of the acid-induced cyclizations can be explained through the intermedicacy of either nonclassical or contact ion pairs, the regiochemistry reflecting the greater stability of the hydronaphthalene ring system over the hydroazulene. A system of nomenclature for unambiguously labeling each of the low energy conformations of (E)-5-cyclodecenones is also proposed.
查看更多

同类化合物

(2-溴乙氧基)-特丁基二甲基硅烷 骨化醇杂质DCP 马来酸双(三甲硅烷)酯 顺式-二氯二(二甲基硒醚)铂(II) 顺-N-(1-(2-乙氧基乙基)-3-甲基-4-哌啶基)-N-苯基苯酰胺 降钙素杂质13 降冰片烯基乙基三甲氧基硅烷 降冰片烯基乙基-POSS 间-氨基苯基三甲氧基硅烷 镁,氯[[二甲基(1-甲基乙氧基)甲硅烷基]甲基]- 锑,二溴三丁基- 铷,[三(三甲基甲硅烷基)甲基]- 铂(0)-1,3-二乙烯-1,1,3,3-四甲基二硅氧烷 钾(4-{[二甲基(2-甲基-2-丙基)硅烷基]氧基}-1-丁炔-1-基)(三氟)硼酸酯(1-) 金刚烷基乙基三氯硅烷 辛醛,8-[[(1,1-二甲基乙基)二甲基甲硅烷基]氧代]- 辛甲基-1,4-二氧杂-2,3,5,6-四硅杂环己烷 辛基铵甲烷砷酸盐 辛基衍生化硅胶(C8)ZORBAX?LP100/40C8 辛基硅三醇 辛基甲基二乙氧基硅烷 辛基三甲氧基硅烷 辛基三氯硅烷 辛基(三苯基)硅烷 辛乙基三硅氧烷 路易氏剂-3 路易氏剂-2 路易士剂 试剂3-[Tris(trimethylsiloxy)silyl]propylvinylcarbamate 试剂2-(Trimethylsilyl)cyclopent-2-en-1-one 试剂11-Azidoundecyltriethoxysilane 西甲硅油杂质14 衣康酸二(三甲基硅基)酯 苯胺,4-[2-(三乙氧基甲硅烷基)乙基]- 苯磺酸,羟基-,盐,单钠聚合甲醛,1,3,5-三嗪-2,4,6-三胺和脲 苯甲醇,a-[(三苯代甲硅烷基)甲基]- 苯基二甲基氯硅烷 苯基二甲基乙氧基硅 苯基乙酰氧基三甲基硅烷 苯基三辛基硅烷 苯基三甲氧基硅烷 苯基三乙氧基硅烷 苯基三丁酮肟基硅烷 苯基三(异丙烯氧基)硅烷 苯基三(2,2,2-三氟乙氧基)硅烷 苯基(3-氯丙基)二氯硅烷 苯基(1-哌啶基)甲硫酮 苯乙基三苯基硅烷 苯丙基乙基聚甲基硅氧烷 苯-1,3,5-三基三(三甲基硅烷)