Synthesis and Biological Evaluation of Purealin and Analogues as Cytoplasmic Dynein Heavy Chain Inhibitors
摘要:
Cytoplasmic dynein plays important roles in membrane transport, mitosis, and other cellular processes. A few small-molecule inhibitors of cytoplasmic dynein have been identified. We report here the first synthesis of purealin, a natural product isolated from the sea sponge Psammaplysilla purea, which is known to inhibit axonemal dynein. Also described are the first syntheses, by modular amide coupling reactions, of the natural product purealidin A (a component of purealin) and a small library of analogues. The library was examined for inhibition of cytoplasmic dynein heavy chain and cell growth. The compounds showed effective antiproliferative activity against a mouse leukemia cell line but selective activities against human carcinoma cell lines. Purealin and some of the analogues inhibited the microtubule-stimulated ATPase activity of recombinant cytoplasmic dynein heavy chain motor domain. The inhibitory effect of purealin was concentration dependent and uncompetitive, supporting the hypothesis that it does not compete with the binding of ATP.
Synthesis and Biological Evaluation of Purealin and Analogues as Cytoplasmic Dynein Heavy Chain Inhibitors
摘要:
Cytoplasmic dynein plays important roles in membrane transport, mitosis, and other cellular processes. A few small-molecule inhibitors of cytoplasmic dynein have been identified. We report here the first synthesis of purealin, a natural product isolated from the sea sponge Psammaplysilla purea, which is known to inhibit axonemal dynein. Also described are the first syntheses, by modular amide coupling reactions, of the natural product purealidin A (a component of purealin) and a small library of analogues. The library was examined for inhibition of cytoplasmic dynein heavy chain and cell growth. The compounds showed effective antiproliferative activity against a mouse leukemia cell line but selective activities against human carcinoma cell lines. Purealin and some of the analogues inhibited the microtubule-stimulated ATPase activity of recombinant cytoplasmic dynein heavy chain motor domain. The inhibitory effect of purealin was concentration dependent and uncompetitive, supporting the hypothesis that it does not compete with the binding of ATP.
Versatile Routes to Marine Sponge Metabolites through Benzylidene Rhodanines
作者:Suresh K. Kottakota、Mathew Benton、Dimitrios Evangelopoulos、Juan D. Guzman、Sanjib Bhakta、Timothy D. McHugh、Mark Gray、Paul W. Groundwater、Emma C. L. Marrs、John D. Perry、J. Jonathan Harburn
DOI:10.1021/ol303057a
日期:2012.12.21
The first total synthesis of the marine natural products Psammaplin C and Tokaradine A is described. Benzylidene rhodanines were utilized as versatile intermediates toward the synthesis of seven brominated marine sponge metabolites through the optimization of protection group strategies. Spermatinamine demonstrated good inhibition of all cancer cell lines tested, in particular the leukemia K562 and colon cancer HT29 cell lines.
Synthesis and Biological Evaluation of Purealin and Analogues as Cytoplasmic Dynein Heavy Chain Inhibitors
作者:Guangyu Zhu、Fanglong Yang、Raghavan Balachandran、Peter Höök、Richard B. Vallee、Dennis P. Curran、Billy W. Day
DOI:10.1021/jm051030l
日期:2006.3.1
Cytoplasmic dynein plays important roles in membrane transport, mitosis, and other cellular processes. A few small-molecule inhibitors of cytoplasmic dynein have been identified. We report here the first synthesis of purealin, a natural product isolated from the sea sponge Psammaplysilla purea, which is known to inhibit axonemal dynein. Also described are the first syntheses, by modular amide coupling reactions, of the natural product purealidin A (a component of purealin) and a small library of analogues. The library was examined for inhibition of cytoplasmic dynein heavy chain and cell growth. The compounds showed effective antiproliferative activity against a mouse leukemia cell line but selective activities against human carcinoma cell lines. Purealin and some of the analogues inhibited the microtubule-stimulated ATPase activity of recombinant cytoplasmic dynein heavy chain motor domain. The inhibitory effect of purealin was concentration dependent and uncompetitive, supporting the hypothesis that it does not compete with the binding of ATP.