The first silanediol inhibitor of thermolysin is reported, prepared by analogy with the Grobelny/Bartlett phosphinate inhibitor. A Cbz group on nitrogen proved to be unstable to the triflic acid mediated silanediol deprotection and was replaced with a dihydrocinnamoyl group. The silanediol was prepared in high purity by hydrolysis of a difluorosilane intermediate and proved to be an effective inhibitor, differing from the phosphinate by a factor of 4 (K-i = 41 nM). (C) 2002 Elsevier Science Ltd. All rights reserved.
The first silanediol inhibitor of thermolysin is reported, prepared by analogy with the Grobelny/Bartlett phosphinate inhibitor. A Cbz group on nitrogen proved to be unstable to the triflic acid mediated silanediol deprotection and was replaced with a dihydrocinnamoyl group. The silanediol was prepared in high purity by hydrolysis of a difluorosilane intermediate and proved to be an effective inhibitor, differing from the phosphinate by a factor of 4 (K-i = 41 nM). (C) 2002 Elsevier Science Ltd. All rights reserved.
The first silanediol inhibitor of thermolysin is reported, prepared by analogy with the Grobelny/Bartlett phosphinate inhibitor. A Cbz group on nitrogen proved to be unstable to the triflic acid mediated silanediol deprotection and was replaced with a dihydrocinnamoyl group. The silanediol was prepared in high purity by hydrolysis of a difluorosilane intermediate and proved to be an effective inhibitor, differing from the phosphinate by a factor of 4 (K-i = 41 nM). (C) 2002 Elsevier Science Ltd. All rights reserved.
A Silanediol Inhibitor of the Metalloprotease Thermolysin: Synthesis and Comparison with a Phosphinic Acid Inhibitor<sup>1</sup>
作者:Jaeseung Kim、Scott McN. Sieburth
DOI:10.1021/jo049929i
日期:2004.4.1
A silanediol inhibitor of the metalloprotease thermolysin was prepared for comparison to a known phosphinic acid inhibitor, providing the first comparison of these second-row element based transition-state analogues. Inhibition of thermolysin by the silanediol (K-i = 41 nM) was comparable to that of the phosphinic acid (K-i = 10 nM) even though the silanediol is uncharged and thereby lacks the intrinsic Coulombic attraction of the phosphinate anion to the active-site zinc cation. This silanediol protease inhibitor is the least sterically encumbered example prepared to date and, therefore, the most prone toward polymerization. Hydrolysis of a difluorosilane intermediate to the silanediol leads cleanly to a monomeric product.