摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

benzyl 4-(4-formylphenyl)butanoate | 1370290-50-8

中文名称
——
中文别名
——
英文名称
benzyl 4-(4-formylphenyl)butanoate
英文别名
4-Formylbenzenebutanoic acid phenylmethyl ester
benzyl 4-(4-formylphenyl)butanoate化学式
CAS
1370290-50-8
化学式
C18H18O3
mdl
——
分子量
282.339
InChiKey
HLIGZXVLEPDXLJ-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    436.3±33.0 °C(Predicted)
  • 密度:
    1.140±0.06 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    3.3
  • 重原子数:
    21
  • 可旋转键数:
    8
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.22
  • 拓扑面积:
    43.4
  • 氢给体数:
    0
  • 氢受体数:
    3

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    参考文献:
    名称:
    Design and Synthesis of Novel Lactate Dehydrogenase A Inhibitors by Fragment-Based Lead Generation
    摘要:
    Lactate dehydrogenase A (LDHA) catalyzes the conversion of pyruvate to lactate, utilizing NADH as a cofactor. It has been identified as a potential therapeutic target in the area of cancer metabolism. In this manuscript we report our progress using fragment-based lead generation (FBLG), assisted by X-ray crystallography to develop small molecule LDHA inhibitors. Fragment hits were identified through NMR and SPR screening and optimized into lead compounds with nanomolar binding affinities via fragment linking. Also reported is their modification into cellular active compounds suitable for target validation work.
    DOI:
    10.1021/jm201734r
  • 作为产物:
    描述:
    4-苯基丁酸咪唑 、 lithium hydroxide monohydrate 、 硫酸N,N'-羰基二咪唑三氟乙酸 作用下, 以 四氢呋喃乙醇二氯甲烷 为溶剂, 反应 71.0h, 生成 benzyl 4-(4-formylphenyl)butanoate
    参考文献:
    名称:
    Design and Synthesis of Novel Lactate Dehydrogenase A Inhibitors by Fragment-Based Lead Generation
    摘要:
    Lactate dehydrogenase A (LDHA) catalyzes the conversion of pyruvate to lactate, utilizing NADH as a cofactor. It has been identified as a potential therapeutic target in the area of cancer metabolism. In this manuscript we report our progress using fragment-based lead generation (FBLG), assisted by X-ray crystallography to develop small molecule LDHA inhibitors. Fragment hits were identified through NMR and SPR screening and optimized into lead compounds with nanomolar binding affinities via fragment linking. Also reported is their modification into cellular active compounds suitable for target validation work.
    DOI:
    10.1021/jm201734r
点击查看最新优质反应信息

文献信息

  • Artificial Protein Crosstalk with a Molecule that Exchanges Binding Partners
    作者:Ohad Suss、Olga Halfin、Ziv Porat、Yael Fridmann Sirkis、Leila Motiei、David Margulies
    DOI:10.1002/anie.202312461
    日期:2024.2.12
    Abstract

    Drawing inspiration from allosteric signaling enzymes, whose catalytic and regulatory units are non‐covalently linked, we have devised a method to establish unnatural, effector‐mediated enzyme activation within native cells. The feasibility of this approach is demonstrated by introducing a synthetic regulatory unit (sRU) onto glycogen synthase kinase 3 (GSK‐3) through non‐covalent means. Our study reveals that this synthetic regulator mediates an unnatural crosstalk between GSK‐3 and lactate dehydrogenase A (LDHA), whose expression is regulated by cellular oxygen levels. Specifically, with this approach, the constitutively active GSK‐3 is transformed into an activable enzyme, whereas LDHA is repurposed as an unnatural effector protein that controls the activity of the kinase, making it unnaturally dependent on the cell‘s hypoxic response. These findings demonstrate a step toward imitating the function of effector‐regulated cell‐signaling enzymes, which play a key biological role in mediating the response of cells to changes in their environment. In addition, at the proof‐of‐principle level, our results indicate the potential to develop a new class of protein inhibitors whose inhibitory effect in cells is dictated by the cell‘s environment and consequent protein expression profile.

    摘要从异位信号酶(其催化和调控单元是非共价连接的)中汲取灵感,我们设计了一种在原生细胞内建立非自然的、效应器介导的酶激活的方法。通过非共价方式在糖原合酶激酶 3(GSK-3)上引入合成调控单元(sRU),证明了这种方法的可行性。我们的研究发现,这种合成调节因子介导了 GSK-3 与乳酸脱氢酶 A(LDHA)之间的非自然串扰,而后者的表达受细胞氧水平的调节。具体来说,通过这种方法,组成型活性 GSK-3 被转化为一种可激活的酶,而 LDHA 则被改造为一种非天然的效应蛋白,可控制激酶的活性,从而使其不自然地依赖于细胞的缺氧反应。这些发现表明,在模仿效应器调控的细胞信号酶的功能方面迈出了一步,这种酶在介导细胞对环境变化的反应方面发挥着关键的生物学作用。此外,在原理验证层面,我们的研究结果表明有可能开发出一类新的蛋白质抑制剂,其对细胞的抑制作用取决于细胞的环境和随之而来的蛋白质表达谱。
  • Design, synthesis, and structure–activity relationships of a series of 4-benzyl-5-isopropyl-1H-pyrazol-3-yl β-d-glycopyranosides substituted with novel hydrophilic groups as highly potent inhibitors of sodium glucose co-transporter 1 (SGLT1)
    作者:Nobuhiko Fushimi、Hirotaka Teranishi、Kazuo Shimizu、Shigeru Yonekubo、Kohsuke Ohno、Takashi Miyagi、Fumiaki Itoh、Toshihide Shibazaki、Masaki Tomae、Yukiko Ishikawa-Takemura、Takeshi Nakabayashi、Noboru Kamada、Yuji Yamauchi、Susumu Kobayashi、Masayuki Isaji
    DOI:10.1016/j.bmc.2012.11.041
    日期:2013.2
    Sodium glucose co-transporter 1 (SGLT1) plays a dominant role in the absorption of glucose in the gut and is considered a promising target in the development of therapeutic options for postprandial hyperglycemia. Previously, we reported potent and selective SGLT1 inhibitors 1 and 2 showing efficacy in oral carbohydrate tolerance tests in diabetic rat models. In a pharmacokinetic (PK) study of 2, excessive systemic exposure to metabolites of 2 was observed, presumably due to the high permeability of its aglycone (2a). To further improve SGLT1 inhibitory activity and reduce aglycone permeability, a series of 4-benzyl-5-isopropyl-1H-pyrazol-3-yl beta-D-glycopyranoside derivatives bearing novel hydrophilic substitution groups on the phenyl ring were synthesized and their inhibitory activity toward SGLTs was evaluated. Optimized compound 14c showed an improved profile satisfying both higher activity and lower permeability of its aglycone (22f) compared with initial leads 1 and 2. Moreover, the superior efficacy of 14c in various carbohydrate tolerance tests in diabetic rat models was confirmed compared with acarbose, an alpha-glucosidase inhibitor (alpha-GI) widely used in the clinic. (C) 2012 Elsevier Ltd. All rights reserved.
  • Design and Synthesis of Novel Lactate Dehydrogenase A Inhibitors by Fragment-Based Lead Generation
    作者:Richard A. Ward、Claire Brassington、Alexander L. Breeze、Alessandro Caputo、Susan Critchlow、Gareth Davies、Louise Goodwin、Giles Hassall、Ryan Greenwood、Geoffrey A. Holdgate、Michael Mrosek、Richard A. Norman、Stuart Pearson、Jonathan Tart、Julie A. Tucker、Martin Vogtherr、David Whittaker、Jonathan Wingfield、Jon Winter、Kevin Hudson
    DOI:10.1021/jm201734r
    日期:2012.4.12
    Lactate dehydrogenase A (LDHA) catalyzes the conversion of pyruvate to lactate, utilizing NADH as a cofactor. It has been identified as a potential therapeutic target in the area of cancer metabolism. In this manuscript we report our progress using fragment-based lead generation (FBLG), assisted by X-ray crystallography to develop small molecule LDHA inhibitors. Fragment hits were identified through NMR and SPR screening and optimized into lead compounds with nanomolar binding affinities via fragment linking. Also reported is their modification into cellular active compounds suitable for target validation work.
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫 龙胆紫 齐达帕胺 齐诺康唑 齐洛呋胺 齐墩果-12-烯[2,3-c][1,2,5]恶二唑-28-酸苯甲酯 齐培丙醇 齐咪苯 齐仑太尔 黑染料 黄酮,5-氨基-6-羟基-(5CI) 黄酮,6-氨基-3-羟基-(6CI) 黄蜡,合成物 黄草灵钾盐