摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

3(S)-(phenylsulfonyl)cyclopent-1-ene | 171774-71-3

中文名称
——
中文别名
——
英文名称
3(S)-(phenylsulfonyl)cyclopent-1-ene
英文别名
(S)-3-(phenylsulfonyl)cyclopent-1-ene;[(1S)-cyclopent-2-en-1-yl]sulfonylbenzene
3(S)-(phenylsulfonyl)cyclopent-1-ene化学式
CAS
171774-71-3
化学式
C11H12O2S
mdl
——
分子量
208.281
InChiKey
DQMDJTKWJPKCJC-LLVKDONJSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    2.2
  • 重原子数:
    14
  • 可旋转键数:
    2
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.27
  • 拓扑面积:
    42.5
  • 氢给体数:
    0
  • 氢受体数:
    2

反应信息

  • 作为反应物:
    描述:
    3(S)-(phenylsulfonyl)cyclopent-1-ene吡啶4-二甲氨基吡啶 、 sodium amalgam 、 间氯过氧苯甲酸 作用下, 以 甲醇二氯甲烷 为溶剂, 反应 44.0h, 生成 (S)-(cyclopent-2-en-1-yl)acetate
    参考文献:
    名称:
    Asymmetric synthesis of allylic sulfones useful as asymmetric building blocks.
    摘要:
    Construction of sulfones in enantiomerically pure form provides a great opportunity to enhance their value as synthetic building blocks. Allylic sulfones, in particular, have great flexibility derived from sulfone-controlled additions to the double bond. Two strategies have been developed based upon the ability to effect asymmetric allylic alkylations with palladium employing ligands derived from c(2) symmetric diamines and 2-(diphenylphosphino)benzoic acid. Desymmetrization of meso-2-ene-1,4-diol diesters does not involve the nucleophile in the enantiodiscriminating step and thus should, a priori, not depend upon the nature of the nucleophile. Indeed, such desymmetrization of such a diester in the presence of a sulfinate anion gave excellent enantioselectivity. On the other hand, conversion of both enantiomeric allylic esters to enantiomerically pure allylic sulfones requires sodium benzenesulfinate to participate in the enantiodiscriminating step. Five-, six-, and seven-membered substrates all gave excellent enantioselectivities. A catalytic phase transfer system proved most efficacious on larger scales. propagating the asymmetry requires diastereoselective functionalization of the double bond. While epoxidation proved excellent for the five-membered ring case and satisfactory for the six-membered ring case, it was unsatisfactory in the seven-membered ring case. Osmium tetroxide-catalyzed cis-dihydroxylation gave excellent diastereoselectivities in the six- and seven-membered ring cases. Reductive cleavages produced enantiomerically pure allylic alcohols. Base-catalyzed elimination generated enantiomerically pure gamma-hydroxy-alpha,beta-unsaturated sulfones from which further stereogenic centers were produced by diastereoselective conjugate additions. Notably, an asymmetric cyclopentenone annulation using palladium-catalyzed cycloadditions now derives from racemic allyl alcohols.
    DOI:
    10.1021/ja00143a007
  • 作为产物:
    描述:
    2-(1-环戊烯基)乙酸酯sodium benzenesulfonate 在 bis(η3-allyl-μ-chloropalladium(II)) 、 1,2-bis[N-(2'-(diphenylphosphino)benzoyl)]-1(S),2(R)-diaminocyclohexane 、 四己基溴化铵 作用下, 生成 3(S)-(phenylsulfonyl)cyclopent-1-ene
    参考文献:
    名称:
    Asymmetric synthesis of allylic sulfones useful as asymmetric building blocks.
    摘要:
    Construction of sulfones in enantiomerically pure form provides a great opportunity to enhance their value as synthetic building blocks. Allylic sulfones, in particular, have great flexibility derived from sulfone-controlled additions to the double bond. Two strategies have been developed based upon the ability to effect asymmetric allylic alkylations with palladium employing ligands derived from c(2) symmetric diamines and 2-(diphenylphosphino)benzoic acid. Desymmetrization of meso-2-ene-1,4-diol diesters does not involve the nucleophile in the enantiodiscriminating step and thus should, a priori, not depend upon the nature of the nucleophile. Indeed, such desymmetrization of such a diester in the presence of a sulfinate anion gave excellent enantioselectivity. On the other hand, conversion of both enantiomeric allylic esters to enantiomerically pure allylic sulfones requires sodium benzenesulfinate to participate in the enantiodiscriminating step. Five-, six-, and seven-membered substrates all gave excellent enantioselectivities. A catalytic phase transfer system proved most efficacious on larger scales. propagating the asymmetry requires diastereoselective functionalization of the double bond. While epoxidation proved excellent for the five-membered ring case and satisfactory for the six-membered ring case, it was unsatisfactory in the seven-membered ring case. Osmium tetroxide-catalyzed cis-dihydroxylation gave excellent diastereoselectivities in the six- and seven-membered ring cases. Reductive cleavages produced enantiomerically pure allylic alcohols. Base-catalyzed elimination generated enantiomerically pure gamma-hydroxy-alpha,beta-unsaturated sulfones from which further stereogenic centers were produced by diastereoselective conjugate additions. Notably, an asymmetric cyclopentenone annulation using palladium-catalyzed cycloadditions now derives from racemic allyl alcohols.
    DOI:
    10.1021/ja00143a007
点击查看最新优质反应信息

文献信息

  • π-Allylic Sulfonylation in Water with Amphiphilic Resin-Supported Palladium-Phosphine Complexes
    作者:Yasuhiro Uozumi、Toshimasa Suzuka
    DOI:10.1055/s-2008-1067096
    日期:——
    with an amphiphilic polystyrene-poly(ethylene glycol) (PS-PEG) resin-supported phosphine-palladium complex in water as a single reaction medium under heterogeneous conditions to give allyl sulfones in good to high yields. Catalytic asymmetric allylic substitution of cycloalkenyl esters also took place in water using a PS-PEG resin-supported chiral imidazo-indolephosphine-palladium complex to give cycloalkenyl
    用两亲性聚苯乙烯-聚(乙二醇)(PS-PEG)树脂负载的膦-钯配合物在水中作为单一反应介质在非均相条件下进行烯丙基酯与芳基亚磺酸钠的 π-烯丙基取代,得到良好的烯丙基砜到高产。环烯基酯的催化不对称烯丙基取代也在水中使用 PS-PEG 树脂负载的手性咪唑-吲哚膦-钯络合物进行,得到高达 81% ee 的环烯基砜。
  • Asymmetric synthesis of allylic sulfones useful as asymmetric building blocks.
    作者:Barry M. Trost、Michael G. Organ、George A. O'Doherty
    DOI:10.1021/ja00143a007
    日期:1995.9
    Construction of sulfones in enantiomerically pure form provides a great opportunity to enhance their value as synthetic building blocks. Allylic sulfones, in particular, have great flexibility derived from sulfone-controlled additions to the double bond. Two strategies have been developed based upon the ability to effect asymmetric allylic alkylations with palladium employing ligands derived from c(2) symmetric diamines and 2-(diphenylphosphino)benzoic acid. Desymmetrization of meso-2-ene-1,4-diol diesters does not involve the nucleophile in the enantiodiscriminating step and thus should, a priori, not depend upon the nature of the nucleophile. Indeed, such desymmetrization of such a diester in the presence of a sulfinate anion gave excellent enantioselectivity. On the other hand, conversion of both enantiomeric allylic esters to enantiomerically pure allylic sulfones requires sodium benzenesulfinate to participate in the enantiodiscriminating step. Five-, six-, and seven-membered substrates all gave excellent enantioselectivities. A catalytic phase transfer system proved most efficacious on larger scales. propagating the asymmetry requires diastereoselective functionalization of the double bond. While epoxidation proved excellent for the five-membered ring case and satisfactory for the six-membered ring case, it was unsatisfactory in the seven-membered ring case. Osmium tetroxide-catalyzed cis-dihydroxylation gave excellent diastereoselectivities in the six- and seven-membered ring cases. Reductive cleavages produced enantiomerically pure allylic alcohols. Base-catalyzed elimination generated enantiomerically pure gamma-hydroxy-alpha,beta-unsaturated sulfones from which further stereogenic centers were produced by diastereoselective conjugate additions. Notably, an asymmetric cyclopentenone annulation using palladium-catalyzed cycloadditions now derives from racemic allyl alcohols.
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫 龙胆紫 齐达帕胺 齐诺康唑 齐洛呋胺 齐墩果-12-烯[2,3-c][1,2,5]恶二唑-28-酸苯甲酯 齐培丙醇 齐咪苯 齐仑太尔 黑染料 黄酮,5-氨基-6-羟基-(5CI) 黄酮,6-氨基-3-羟基-(6CI) 黄蜡,合成物 黄草灵钾盐