represents a promising therapeutic strategy for cancer drug development. In the present study, we designed, synthesized, and evaluated a new series of biarylquinoline derivatives as potential HIF-1α inhibitors based on structure–activity relationship. Among these derivatives, compound 7f represents the optimal agent with IC50 values of 28 nM and 15 nM in suppressing the viability of MiaPaCa-2 and MDA-MB-231
A method for producing a biaryl compound, comprising reacting an aromatic organic compound with at least one compound selected from the group consisting of aromatic organoboron compounds and boroxine compounds, in the presence of a zero-valent nickel catalyst, phosphine ligand and base.
A method for producing a biaryl compound, comprising reacting an aromatic organic compound with at least one compound selected from the group consisting of aromatic organoboron compounds and boroxine compounds, in the presence of a zero-valent nickel catalyst, phosphine ligand and base.
role in the biosynthesis of androgens. Flufenamic acid, a non-selective AKR1C3 inhibitor, has previously been subjected to bioisosteric modulation to give rise to a series of compounds with the hydroxytriazole core. In this work, the hit compound of the previous series has been modulated further, and new, more potent, and selective derivatives have been obtained. The poor solubility of the most active
chemistry and drug development. Biphenyl derivatives have demonstrated notable biological activities, including antimicrobial, anti‐inflammatory, anti‐HIV, and the treatment of neuropathic pain. Importantly, their anticancer abilities should not be underestimated. In this context, the present study involves the design and synthesis of a series of biphenyl derivatives featuring an additional privileged structure