摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

PRPP | 13270-65-0

中文名称
——
中文别名
——
英文名称
PRPP
英文别名
5-Phosphoribosyl 1-pyrophosphate;[(2R,3S,4R,5R)-3,4-dihydroxy-5-[oxido(phosphonatooxy)phosphoryl]oxyoxolan-2-yl]methyl phosphate
PRPP化学式
CAS
13270-65-0
化学式
C5H8O14P3
mdl
——
分子量
385.031
InChiKey
PQGCEDQWHSBAJP-TXICZTDVSA-I
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -6.2
  • 重原子数:
    22
  • 可旋转键数:
    5
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    1.0
  • 拓扑面积:
    244
  • 氢给体数:
    2
  • 氢受体数:
    14

反应信息

  • 作为反应物:
    描述:
    4-hydroxy-1H-pyrazole-3,5-dicarboxylic acid 、 PRPP 在 β-ribofuranosylaminobenzene 5'-phosphate synthase from Streptomyces candidus NRRL 3601 、 magnesium chloride 作用下, 以 aq. buffer 为溶剂, 反应 2.0h, 生成
    参考文献:
    名称:
    吡唑-C-核苷福斯霉素和吡唑啉的生物合成过程中C-糖苷合酶的鉴定。
    摘要:
    C-核苷的特征在于杂环碱基与呋喃核糖环之间的CC键而不是CN键。虽然已经研究了伪尿苷-C-核苷的生物合成,但是对于吡唑-C-核苷如甲霉素和吡唑呋林的了解较少。在此,对链霉菌NRRL 3601的基因组筛选导致发现了吡唑并呋喃生物合成基因簇pyf。基因产物PyfQ的体外表征表明,它能够催化由4-羟基-1H-吡唑-3,5-二羧酸和磷酸核糖焦磷酸(PRPP)形成C-糖苷羧基羟基吡唑核糖核苷酸(CHPR)。类似地,ForT,一种在霉菌素途径中的PyfQ同源物,可以催化4-氨基-1H-吡唑-3,5-二羧酸和PRPP的偶联,形成羧氨基吡唑核糖核苷酸。最后,
    DOI:
    10.1002/anie.201910356
  • 作为产物:
    描述:
    a 2,4-dioxotetrahydropyrimidine D-ribonucleotide 、 pyrophosphoric acid 生成 二氢尿嘧啶PRPP
    参考文献:
    名称:
    HATFIELD D.; WYNGAARDEN J.B., J Biol Chem, 1964, 0021-9258, 2580-6
    摘要:
    DOI:
点击查看最新优质反应信息

文献信息

  • Alternative substrates reveal catalytic cycle and key binding events in the reaction catalysed by anthranilate phosphoribosyltransferase from <i>Mycobacterium tuberculosis</i>
    作者:Tammie V. M. Cookson、Alina Castell、Esther M. M. Bulloch、Genevieve L. Evans、Francesca L. Short、Edward N. Baker、J. Shaun Lott、Emily J. Parker
    DOI:10.1042/bj20140209
    日期:2014.7.1
    AnPRT (anthranilate phosphoribosyltransferase), required for the biosynthesis of tryptophan, is essential for the virulence of Mycobacterium tuberculosis (Mtb). AnPRT catalyses the Mg2+-dependent transfer of a phosphoribosyl group from PRPP (5'-phosphoribosyl-1'-pyrophosphate) to anthranilate to form PRA (5'-phosphoribosyl anthranilate). Mtb-AnPRT was shown to catalyse a sequential reaction and significant
    生物合成所需的AnPRT(邻氨基苯甲酸磷酸核糖基转移酶)对于结核分枝杆菌(Mtb)的毒性至关重要。AnPRT催化从PRPP(5'-磷酸核糖基-1'-焦磷酸)到邻氨基苯甲酸酯的Mg2 +依赖性转移,形成PRA(5'-磷酸核糖邻氨基苯甲酸酯)。已显示Mtb-AnPRT催化顺序反应,并观察到邻氨基苯甲酸显着抑制底物。已显示抗分枝杆菌邻氨基苯甲酸酯和甲基取代的类似物可作为Mtb-AnPRT的替代底物,产生相应的取代PRA产品。与邻氨基苯甲酸类似物复合的酶的结构揭示了邻氨基苯甲酸的两个不同的结合位点。一个站点位于8Å(1Å= 0)以上。从PRPP到通往活性部位的隧道入口处约1 nm),而在第二个内部部位,邻氨基苯甲酸酯与PRPP相邻,处于催化相关位置。将类似物浸泡一段可变的时间,可以证明邻氨基苯甲酸酯在从外部位点转移到内部催化位点的过程中位于瞬态位置。已显示PRPP和Mg2 +的结合与两个
  • Two genes encoding uracil phosphoribosyltransferase are present in Bacillus subtilis
    作者:J Martinussen、P Glaser、P S Andersen、H H Saxild
    DOI:10.1128/jb.177.1.271-274.1995
    日期:1995.1

    Uracil phosphoribosyltransferase (UPRTase) catalyzes the key reaction in the salvage of uracil in many microorganisms. Surprisingly, two genes encoding UPRTase activity were cloned from Bacillus subtilis by complementation of an Escherichia coli mutant. The genes were sequenced, and the putative amino acid sequences were deduced. One gene showed a high level of homology to UPRTases from other organisms, whereas the other gene with a low level of homology to other UPRTases turned out to be the pyrR gene--the repressor of the pyr operon. The role of these genes in uracil metabolism was established by an analysis of the phenotypes of upp and pyrR mutants.

    尿嘧啶磷酸核糖转移酶(UPRTase)在许多微生物中催化尿嘧啶回收的关键反应。令人惊讶的是,通过对大肠杆菌突变体的互补作用,从枯草杆菌中克隆出了两个编码UPRTase活性的基因。对这些基因进行了测序,并推断出了可能的氨基酸序列。一个基因与其他生物UPRTases具有很高的同源性,而另一个基因与其他UPRTases的同源性较低,结果证明其为pyrR基因- pyr操纵子的抑制因子。通过对UPp和pyrR突变体表型的分析,确定了这些基因在尿嘧啶代谢中的作用。
  • The structural mechanism of GTP stabilized oligomerization and catalytic activation of the <i>Toxoplasma gondii</i> uracil phosphoribosyltransferase
    作者:Maria A. Schumacher、Caleb J. Bashor、Minsun Hong Song、Kanao Otsu、Shuren Zhu、Ronald J. Parry、Buddy Ullman、Richard G. Brennan
    DOI:10.1073/pnas.012399599
    日期:2002.1.8

    Uracil phosphoribosyltransferase (UPRT) is a member of a large family of salvage and biosynthetic enzymes, the phosphoribosyltransferases, and catalyzes the transfer of ribose 5-phosphate from α- d -5-phosphoribosyl-1-pyrophosphate (PRPP) to the N1 nitrogen of uracil. The UPRT from the opportunistic pathogen Toxoplasma gondii represents a promising target for rational drug design, because it can create intracellular, lethal nucleotides from subversive substrates. However, the development of such compounds requires a detailed understanding of the catalytic mechanism. Toward this end we determined the crystal structure of the T. gondii UPRT bound to uracil and cPRPP, a nonhydrolyzable PRPP analogue, to 2.5-Å resolution. The structure suggests that the catalytic mechanism is substrate-assisted, and a tetramer would be the more active oligomeric form of the enzyme. Subsequent biochemical studies revealed that GTP binding, which has been suggested to play a role in catalysis by other UPRTs, causes a 6-fold activation of the T. gondii enzyme and strikingly stabilizes the tetramer form. The basis for stabilization was revealed in the 2.45-Å resolution structure of the UPRT–GTP complex, whereby residues from three subunits contributed to GTP binding. Thus, our studies reveal an allosteric mechanism involving nucleotide stabilization of a more active, higher order oligomer. Such regulation of UPRT could play a role in the balance of purine and pyrimidine nucleotide pools in the cell.

    尿嘧啶磷酸核糖转移酶(UPRT)是一个大型救赎和生物合成酶家族的成员,催化将核糖5-磷酸从α-d-5-磷酸核糖-1-焦磷酸(PRPP)转移至尿嘧啶的N1氮。来自机会性病原体弓形虫的UPRT代表了理性药物设计的一个有前途的靶点,因为它可以从颠覆性底物中创建细胞内致死核苷酸。然而,这种化合物的开发需要对催化机制有详细的了解。为此,我们确定了弓形虫UPRT与尿嘧啶和cPRPP(一种不可解的PRPP类似物)结合的晶体结构,分辨率为2.5埃。该结构表明,催化机制是底物辅助的,四聚体将是酶的更活跃的寡聚体形式。随后的生化研究揭示,GTP结合,这被认为在其他UPRT中在催化中起作用,导致弓形虫酶的6倍活化,并显着稳定四聚体形式。稳定的基础在UPRT-GTP复合物的2.45埃分辨率结构中揭示,其中来自三个亚基的残基贡献于GTP结合。因此,我们的研究揭示了一种涉及核苷酸稳定更活跃的高级别寡聚体的变构机制。UPRT的这种调节可能在细胞内嘌呤嘧啶核苷酸池的平衡中发挥作用。
  • Structure of product-bound<i>Bacillus caldolyticus</i>uracil phosphoribosyltransferase confirms ordered sequential substrate binding
    作者:Anders Kadziola、Jan Neuhard、Sine Larsen
    DOI:10.1107/s0907444902005024
    日期:2002.6.1
    sequence motif known from other type I phosphoribosyltransferases and binds the ribose-5'-phosphate part of UMP. The second segment, Tyr193-Ala201, which is specific for uracil phosphoribosyltransferases, binds the uracil part of UMP through backbone contacts, partly mediated by a water molecule. Modelling of a PRPP-enzyme complex reveals that uracil can be activated to its tautomeric enol form by the complex
    尿嘧啶磷酸核糖基转移酶(UPRTase)是导致UMP生物合成的挽救途径的一部分。它催化尿嘧啶和α-D-5-磷酸核糖基-1-焦磷酸形成UMP焦磷酸。与UMP从头合成中的酶不同,UPRTase仅在低等生物中发现,因此是开发新抗生素的潜在靶标。来自解热芽孢杆菌的UPRTase已被结晶,通过同构置换确定了结构,并将其精制至3.0 A的分辨率。来自解芽孢杆菌的UPRTase形成二聚体,其中活性位点彼此背离。每个子单元的长臂缠绕着另一个子单元,构成了二聚体界面的一半。单体采用I型磷酸核糖基转移酶,带有一个定义尿嘧啶结合位点的小C端罩。该结构在活性位点包含定义明确的UMP分子。UMP的结合涉及在UPRTase之间高度保守的两个序列区段。第一段,Asp131-Ser139,包含从其他I型磷酸核糖基转移酶已知的PRPP结合共有序列基序,并结合UMP核糖5'-磷酸部分。第二个片段,Tyr193-Ala2
  • Molecular basis for the inhibition of human NMPRTase, a novel target for anticancer agents
    作者:Javed A Khan、Xiao Tao、Liang Tong
    DOI:10.1038/nsmb1105
    日期:2006.7
    Nicotinamide phosphoribosyltransferase (NMPRTase) has a crucial role in the salvage pathway of NAD+ biosynthesis, and a potent inhibitor of NMPRTase, FK866, can reduce cellular NAD+ levels and induce apoptosis in tumors. We have determined the crystal structures at up to 2.1-Å resolution of human and murine NMPRTase, alone and in complex with the reaction product nicotinamide mononucleotide or the inhibitor FK866. The structures suggest that Asp219 is a determinant of substrate specificity of NMPRTase, which is confirmed by our mutagenesis studies. FK866 is bound in a tunnel at the interface of the NMPRTase dimer, and mutations in this binding site can abolish the inhibition by FK866. Contrary to current knowledge, the structures show that FK866 should compete directly with the nicotinamide substrate. Our structural and biochemical studies provide a starting point for the development of new anticancer agents.
    烟酰胺磷酸核糖基转移酶(NMPRTase)在NAD+生物合成的修复途径中起着关键作用,而NMPRTase的强效抑制剂FK866可以降低细胞中的NAD+平,并诱导肿瘤细胞凋亡。我们确定了人类和鼠类NMPRTase的晶体结构,分辨率高达2.1Å,包括单独的NMPRTase以及与反应产物烟酰胺单核苷酸或抑制剂FK866的复合物。这些结构表明,Asp219是NMPRTase底物特异性的决定因素,这一点在我们的突变研究中得到证实。FK866结合在NMPRTase二聚体界面上的一个通道中,该结合位点的突变可以消除FK866的抑制作用。与现有知识相反,这些结构表明FK866应该直接与烟酰胺底物竞争。我们的结构和生化研究为开发新的抗癌药物提供了起点。
查看更多